bias collaborative filtering collaborative systems contact recommendation context diversity evaluation finance group recommendation hybrid recommendation information extraction information retrieval information retrieval models information retrieval theory knn learning to rank link prediction metasearch metrics multi-armed bandits multimedia retrieval network monitoring news retrieval nlp non-random missing data novelty performance prediction personalization popularity probabilistic models query aspect rank aggregation rank fusion recommender systems relation extraction semantic search semantics social networks thompson sampling web services
2018 |
P. Castells, R. Cañamares.
Characterization of Fair Experiments for Recommender System Evaluation – A Formal Analysis.
Workshop on Offline Evaluation for Recommender Systems (REVEAL 2018) at the 12th ACM Conference on Recommender Systems (RecSys 2018). Vancouver, Canada, October 2018. Poster |
R. Cañamares, P. Castells.
Should I Follow the Crowd? A Probabilistic Analysis of the Effectiveness of Popularity in Recommender Systems.
41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2018). Ann Arbor, Michigan, USA, July 2018, pp. 415-424 — best paper award. Slides |
R. Cañamares, P. Castells.
From the PRP to the Low Prior Discovery Recall Principle for Recommender Systems.
41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2018). Ann Arbor, Michigan, USA. July 2018, pp. 1081-1084. Poster |
2017 |
R. Cañamares, P. Castells. On the Optimal Non-Personalized Recommendation: From the PRP to the Discovery False Negative Principle. ACM SIGIR 2017 Workshop on Axiomatic Thinking for Information Retrieval and Related Tasks (ATIR 2017). Tokyo, Japan, August 2017. |