
A flexible model for the location of services

Ruben Lara1 Miguel Corella1

Pablo Castells2

1Tecnoloǵıa, Información y Finanzas, Madrid, Spain

{rlara, mcorella}@afi.es
2Universidad Autónoma de Madrid

pablo.castells@uam.es

May 15, 2007

Abstract

The advent of the SOA paradigm is expected to cause an increase
in the number of available services. This increase can create a bot-
tleneck for the location and, therefore, for the use of services that
provide a particular value. In this paper, we propose a model for the
effective location of services, and a prototype implementation of this
model, with some features which make it applicable to heterogeneous
usage scenarios, namely: 1) it is flexible in the kind of descriptions of
services and goals expected, 2) it includes assistance to consumers and
providers in describing the services sought and offered, respectively,
and 3) it offers different trade-offs between the accuracy of results
and the efficiency of the location process based on the application of
different filters.

1 Introduction

SOA is attracting increasing attention as an architectural paradigm that can
enable a higher reuse of IT assets, their principled and eased integration into
more complex services and, therefore, a more agile adaptation and evolution
of IT systems to respond to business needs.

The exposition of functionalities provided by heterogeneous and possibly
distributed systems as reusable, platform-independent, interoperable, and
meaningful (from a business point of view) services is the pillar of SOA; ex-
isting and new pieces of functionality are given visibility and exposed so that

1

they can be seamlessly accessed by other parties. However, for services to be
used, they must be first located. As SOA adoption increases and more ser-
vices are available, the difficulty of locating an appropriate service for solving
some particular need can become a bottleneck for the effective exploitation
of services unless appropriate location mechanisms are in place. The need for
such mechanisms arises in different types of usage scenarios, namely: a) loca-
tion of services at design-time for their composition or integration into more
complex systems or processes, b) run-time location and usage of services,
and c) location of services by end, human users.

For example, a telecommunications provider might define a new business
process for informing their customers about special offers and promotions.
This business process might involve activities realizable by using available
services such as notifying customers by different means (SMS, e-mail, etc.)
or registering what offers and promotions each customer was informed of. The
professionals in charge of the definition and implementation of this process
will want to locate, at design-time, appropriate services that can be statically
incorporated into the process for performing these activities -case a) above-.
Furthermore, if any of the services statically bound to the process fails at
run-time, it is desirable to dynamically locate a new service which can replace
the failed service -case b)-.

Finally, end, human users will want to locate services which can be used
to fulfill their objectives -case c)-. For example, if a user wants to contract
some of the promotions offered by the telecommunications provider, he will
want to locate a service which can be used to perform the desired contracting.

In this paper, we propose a model and a prototype implementation for
(semi)automating the location of services based on the value they offer. Given
the variety of particular usage scenarios of different types we can find, our
model has been driven by the following main considerations:

1. Different usage scenarios are expected to pose different requirements on
the efficiency of the location process and on the accuracy of location
results. Therefore, our model has been designed so that users can
choose among different trade-offs between accuracy and efficiency based
on the application of alternative filters with different properties.

2. What filters can be applied depends on the type of descriptions of
services and goals available. Therefore, we must allow for alternative
descriptions (and views) of goals and services so that different match-
making mechanisms can be applied.

3. Users with different profiles might want to offer or locate services, and
they will usually be able and/or willing to provide certain types of

2

descriptions but not others. For example, an average user might not
be able to provide a formal description of its service functionality unless
he receives appropriate support. For this reason, we let users choose
the complexity of the descriptions they provide and, furthermore, we
offer support to them in describing their goals and services.

Given these considerations, we propose an extensible set of alternative
descriptions of the value of services (Section 2) and of consumers’ goals (Sec-
tion 3). In Section 4, different strategies for assisting users in describing
their services and goals, and the process of publishing service descriptions at
a registry accessible by interested parties, are described.

We also propose different matchmaking mechanisms over alternative de-
scriptions of goals and services. Such matchmaking mechanisms will have
different properties in terms of response times and accuracy and, following
the spirit of LARKS [31], will be regarded as filters which determine the
set of services usable to fulfill a goal, and whose application is decided by
users depending on their particular needs. These filters will be split into
two groups: filters that can be applied at the registry (Section 5), and filters
whose application must be done once service descriptions are retrieved from
the registry, i.e., at the consumer’s side (Section 6). Finally, we will discuss
relevant related work in Section 7 and present our conclusions in Section 8.

2 Types of descriptions of services

In this section, we explain how the concepts of service capability and ser-
vice functionality are understood in our model, and we introduce alternative
descriptions of these elements.

2.1 Services

Services in an SOA are computational entities usable to access a certain
capability [25], being a capability understood as the ability of performing
some action with a perceived value, in the sense that it can constitute a
(perhaps partial) solution to some problem. For example, a party can have
the capability of booking seats on flights operated by a given set of airlines,
and this capability can be made accessible via a WSDL [5] service.

A capability has associated certain effects, that is, results of using a ca-
pability, and the purpose of using a capability is to realize all or part of such
effects [25]. These effects can be either information effects, i.e., some infor-
mation is made visible to the party using the capability, or real world effects,

3

i.e., there is a change in a state shared by (at least) the party providing the
capability and the party using the capability. For example, the capability
above might have associated the effect of providing a confirmation of the
booking to the consumer (information effect), and the effect of booking a
seat on a given flight (real world effect).

A service thus offers access to some capability, called the service capabil-
ity, and the service itself is a means to achieve the effects of such capability.
In particular, the execution of a service results on the realization of some of
the effects of the service capability. However, for such execution to happen,
a service usually requires some values to be assigned to a set of input vari-
ables i1, . . . , in defined by the service interface. Such information must fulfill
certain conditions, called information preconditions e.g. the value assigned
to i1 must correspond to a European city. Furthermore, certain conditions
beyond the information requirements of the service must hold in the shared
state for a service execution to happen, called real world preconditions. For
example, the service might require the consumer to be a registered user.

The particular information and real world effects achieved by executing a
service will actually depend on the input values provided by the consumer and
on the real world conditions that hold when a request is issued to the service.
For example, the booking obtained by executing a service that provides access
to the capability above will depend on the flight data given by the consumer
of the service, and on seat availability on such flight, which is part of the real
world conditions that currently hold. If we consider deterministic services,
a service can be seen as a function that maps certain real world conditions
and certain assignments of values to input variables, to some information
and some real world effects of the service capability. This function is what
we call the service functionality.

2.2 Alternative descriptions

Existing proposals such as [3, 22] rely on a single way of describing the value
of services. However, the variety of usage scenarios in which locating appro-
priate services for fulfilling a goal might be required makes it advisable to
allow for alternative descriptions of service capabilities and functionalities.
In this way: a) providers can choose, depending on their skills and resources,
what types of descriptions of their services they will provide, and b) alterna-
tive matchmaking mechanisms with different properties can be applied.

We consider the use of both formal and non-formal descriptions of ser-
vices. Descriptions of services will be provided using the WSMO framework
[10], and formal descriptions will be given using the WSML family of lan-
guages [11], which has the following variants:

4

Figure 1: WSML Layering [11].

WSML-Core is the basic language of the family. It is defined by the
intersection of Description Logic and Horn Logic (without function symbols
and without equality), based on Description Logic Programs [14], and can
thus function as the basic interoperability layer between both paradigms. In
particular, ground entailment in WSML-Core coincides under first-order [13]
and Logic Programming (LP) [23] semantics.

WSML-DL extends WSML-Core to the SHIQ Description Logic. The
motivation for restricting this variant to SHIQ was its implementability.
However, there now exist efficient implementations which can deal with nom-
inals and, furthermore, it is desirable to be compatible with OWL DL [2].
Therefore, we will consider a new variant of WSML, denoted WSML-DL+,
which is semantically equivalent to SHOIN .

WSML-Flight extends WSML-Core in the direction of Logic Program-
ming, and it allows for writing down any Datalog rule, extended with in-
equality and (locally) stratified negation.

WSML-Rule extends WSML-Flight to a fully-fledged Logic Program-
ming language, including function symbols and without restrictions on the
use of variables in logical expressions.

WSML-Full unifies all WSML variants under a common First-Order
umbrella with non-monotonic extensions which allow to capture nonmono-
tonic negation of WSML-Rule.

WSML has been chosen as it provides an interesting set of languages with
different expressivity and semantics but with two alternative layerings (see
Figure 1), both complete syntactically and semantically (wrt. entailment of
ground facts). The first layering is WSML-Core > WSML-Flight > WSML-
Rule > WSML-Full. The second layering is WSML-Core > WSML-DL >
WSML-Full, which is a complete semantic layering, also with respect to
entailment of non-ground formulae.

The choice of WSMO is mainly motivated by its strong connection to
WSML, which makes the integration of our WSML descriptions into the

5

framework easy. However, the use of other frameworks such as OWL-S [7]
or SWSF [1] is possible, as long as the (extensible) set of alternative descrip-
tions of services considered in our platform can be incorporated into service
descriptions.

2.2.1 Syntactic descriptions

The use of syntactic descriptions, i.e., of descriptions without formal seman-
tics for the location of services offers limited precision, but these descriptions
are in general easier to provide by users than formal descriptions and, fur-
thermore, low response times can be obtained when exploiting them for the
location of services. For this reason, we will consider in our platform the use
of the syntactic descriptions described below.

WSDL description. Services are commonly described using WSDL,
which enables their execution and provides basic information about the ser-
vice functionality (operations, types of inputs and outputs, and optional
textual documentation), often used for locating services and deciding on
their use. In order to keep compatibility with current practices and enable a
smooth transition to the use of new service location mechanisms, we consider
the use of WSDL descriptions.

Listing 1 shows an example WSMO description of a service which offers
the booking of flights operated by airline air with a credit card of type
DummyCard. The webService WSMO element [29] is used for representing
the service, and an URL referencing the location of the WSDL description
of the service is given as the value of the wsdlDescription non-functional
property of the capability element1.

Textual description. The value of a service can be described using nat-
ural language. Although WSDL descriptions can incorporate textual docu-
mentation elements, we will consider a textual description separate from
WSDL documentation as WSDL documentation might not be available and
often mixes technical documentation with the description of the value of the
service. This separate textual description is encoded by the non-functional
property description of the WSMO capability element (see Listing 1).

Categorization. The capability of a service can be described by specify-
ing one or more categories the service belongs to. We assume the existence of
taxonomies of categories reflecting the capability of services. For example, a
taxonomy http://www.afi.es/Taxonomy1 can be defined, including categories
such as FlightBooking, LowCostFlightBooking, CarRental or TrainBooking ;

1This encoding is used as no well-defined mechanism for incorporating WSDL descrip-
tions into WSMO is currently available.

6

these categories reflect capabilities such as booking of seats on flights, book-
ing of seats on low-cost flights, rental of cars, etc.

In Listing 1, the category non-functional property of the capability says
that the service belongs to the category FlightBooking defined by a taxon-
omy http://www.afi.es/Taxonomy1, i.e., that the service has the capability
of booking flights. More than one category can be specified, meaning that
the service belongs to all the categories given. For example, if a service is
categorized under FlightBooking and CarRental, it means that the service
can be used to book seats on flights and to rent cars.

We will assume services are categorized using the most specific categories
which fit the service capability. For example, if a service offers the booking
of seats on flights operated by a low-cost airline, it will be categorized under
LowCostFlightBooking and not under FlightBooking.

2.2.2 Formal descriptions

Different views of the value of a service can be formalized, yielding alternative
types of formal descriptions of the service which might also have different
semantics. In our setting, we will use first-order or LP semantics depending
on the aspect of the service we want to capture and on how we want to
exploit each type of description during the location process.

All formal descriptions will make use of a set of domain ontologies that
provide the necessary domain vocabulary. This set of domain ontologies
will include the definition of actions e.g. Booking, Rental, or Registration,
subconcepts of RealWorldEffect, and of an action InfoProvision denoting the
provision of information to consumers, i.e., information effects. These actions
will be used for the description of the effects of services.

For convenience, and in order to avoid as much as possible the multiple
definition of the same domain vocabulary under different semantics, we will
assume the existence of a common set O of domain ontologies described
in WSML-Core. By restricting the language to WSML-Core, the domain
elements introduced in O will be consistently usable in descriptions in any
WSML variant (and its associated semantics).

However, the expressivity allowed by WSML-Core will not be enough in
certain situations; certain types of descriptions, which make use of WSML-
DL+ and which will be exploited for subsumption reasoning, will require the
formalization of aspects of the domain e.g. disjointness of concepts which are
not expressible in WSML-Core. For this reason, we will allow for the exten-
sion of domain ontologies in O in the direction of Description Logics, yielding
a set ODL of domain ontologies which is the result of extending ontologies in
O with definitions expressible in WSML-DL+ but not in WSML-Core e.g.

7

axioms establishing the disjointness of concepts defined in O.

webService ”http://www.afi.es/AirBooking”
capability AirBooking
nonFunctionalProperties

afi#wsdlDescription hasValue ”http://www.afi.es/AirBooking.wsdl”
afi#category hasValue ”http://www.afi.es/Taxonomy1#FlightBooking”
dc: description hasValue ”Booking of flights operated by air with DummyCard”

endNonFunctionalProperties

sharedVariables {?f , ?p, ?cc}

postcondition
nonFunctionalProperties

afi#postconditionType hasValue ”setBasedCapability”
afi#intention hasValue ”all”

endNonFunctionalProperties
definedBy
?x memberOf Eff AirBooking equivalent ?x memberOf Booking and
exists ?i (?x[ofItem hasValue ?i]) and
forall ?i (
?x[ofItem hasValue ?i] implies ?i memberOf Flight and ?i[operatedBy hasValue air]) and

exists ?cc(?x[withPaymentMethod hasValue ?cc]) and
forall ?cc(
?x[withPaymentMethod hasValue ?cc] implies ?cc memberOf DummyCard).

precondition
definedBy
?f memberOf Flight[operatedBy hasValue air] and ?p memberOf person and ?cc memberOf

DummyCard.

postcondition
nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentEffects”
afi#intention hasValue ”all”

endNonFunctionalProperties
definedBy
?x memberOf InputEff AirBooking equivalent ?x memberOf Booking[ofItem hasValue ?f,

forPerson hasValue ?p, withPaymentMethod hasValue ?cc].

Listing 1: Excerpt of the description of an example service

Set-based modelling of capabilities. The first type of formal description
we consider is the description of the service capability, i.e., of the set of
effects that can be achieved by using the service independently of initial
conditions. This set, following our work in [18], will be formalized using
first-order semantics in order to properly deal, at matchmaking time, with
missing information in the description of the set.

In particular, for a service S, we will model the set of effects achievable
by a DL concept EffS . This concept is defined by specifying what actions,
from the ontologies of actions mentioned above, the service can perform and
under what restrictions, as this will determine the possible effects of service
usage. For example, the possible effects of using the service in Listing 1,
which we will denote AirBooking, can be defined by a concept (in terms of

8

domain ontologies in ODL):
EffAirBooking ≡ Booking u ∃ofItem u ∀ofItem.(Flight u operatedBy.{air})u
∃withPaymentMethod u ∀withPaymentMethod.DummyCard

Intuitively, the formalization above says that possible effects of using the
service will be bookings of flights operated by airline air and paid with a
credit card of type DummyCard. This formalization is restricted in expres-
sivity to WSML-DL+, as it corresponds to a decidable fragment of first-order
logic (SHOIN) for which reasoners offer efficient subsumption reasoning
[26].

For convenience, only one concept is defined for both real world and in-
formation effects; whether the effects achievable are of one type or the other
will be distinguished by the definitions given by ontologies of actions. For
example, we know that the set of effects defined by EffAirBooking are real
world effects because in an ontology of actions the concept Booking is de-
fined as a subconcept of RealWorldEffect; if a service AirSearch provides
information about flights operated by air (information effects), the action
used in the definition of the corresponding concept will be InfoProvision.

The concept that formalizes the set of effects achievable by using the
service will be encoded by a postcondition of the WSMO capability, with
value setBasedCapability for the postconditionType non-functional property
(see Listing 1, where the concept definition is written in WSML human-
readable syntax [11]).

Besides formally describing the set of possible effects of service execution,
we also describe the intention of such description [18]: the service offers either
all the effects in the set defined, encoded by the value all of the intention
non-functional property of the postcondition, or only some of these effects,
encoded by the value some. For the example above, this means that the
service can provide the booking of any flight operated by air with any credit
card of type DummyCard (all), or only some of these bookings (some).

Description of information preconditions. We can describe what
information must be provided to a service for its execution, and what con-
ditions such information must fulfill. In particular, and given a service S
whose interface defines input variables i1, . . . , in, the values required to be
bound to these variables can be described by an LP query. This query does
not only describes what values are valid bindings for input variables, but it
can also be used to obtain possible valid bindings for the service from a given
knowledge base (see Section 6).

If we consider the service in Listing 1, with input variables f, p, cc, infor-
mation preconditions can be described by the following LP query (in terms
of the set O of ontologies):

?− flight(F), operatedBy(F, air), person(P), dummyCard(CC)

9

The definition above states that values for input variables f, p, cc are
required, and that such values must be a flight operated by airline air, a
person, and a dummyCard credit card, respectively. In Listing 1, this query is
encoded, in WSML human-readable syntax, as a precondition of the WSMO
capability element. This definition is restricted in expressivity to a WSML-
Flight query [11], i.e., to a query in Datalog with inequality and (locally)
stratified negation. Therefore, this type of description can only consistently
refer to the WSML-Core fragment of ontologies (O), but not to its extension
in the direction of Description Logics (ODL).

The query above can be used to, given a knowledge base KB whose
expressivity will be restricted to WSML-Core as we will see in Section 3.3, i.e.,
to the intersection of Description Logic and Horn Logic, extract valid bindings
β = {f = vf , p = vp, cc = vcc} of values vf , vp, vcc in KB to input variables,
or to evaluate whether a certain input binding β′ = {f = v′f , p = v′p, cc = v′cc}
is a valid input binding for the service.

Description of input-dependent effects. In most cases, there is a de-
pendency between the values assigned to the input variables of a service and
the effects such service offers. We will want to describe what set of effects
can be achieved by using a service with particular input values and, for this
purpose, we will introduce input variables in the formalization of the set of
possible effects achievable by using the service.

For example, service AirBooking will book the flight and for the person
given as input values to the service, and the booking will be paid with the
credit card provided. We will define a concept InputEffAirBooking which
refers to input variables f, p, cc as follows:

InputEffAirBooking ≡ Bookingu
ofItem.{f} u forPerson.{p} u withPaymentMethod.{cc}
If a particular binding β = {f = vf , p = vp, cc = vcc} is given, assigning

instances (of concepts defined by O) vf , vp, vcc to input variables f, p, cc, we
will obtain the following concept definition:

InputEffAirBooking,β ≡ Bookingu
ofItem.{vf} u forPerson.{vp}) u withPaymentMethod.{vcc}
This concept formalizes what set of effects can be achieved by using the

service with input values vf , vp, vcc. In general, the definition resulting from
substituting input variables by instances of WSML-Core concepts in O must
be within the expressivity of WSML-DL+.

In Listing 1, the concept above is given, using WSML human-readable
syntax, as a WSMO postcondition of type inputDependentEffects, and input
variables f , p, and cc are declared as shared variables, i.e., variables f , p and
cc in the description of information preconditions and of input-dependent

10

effects are considered occurrences of the same variables. Furthermore, the
intention of the input-dependent postcondition (some or all) is encoded by
the intention non-functional property of the postcondition.

Notice that, together, the description of information preconditions and
of input-dependent effects gives a simplified view of the service functionality,
without considering real world preconditions. The reasons why real world
preconditions and how they influence service effects are currently not con-
sidered will be discussed in Section 6.

2.3 Relations between descriptions

Among the alternative descriptions of services introduced above there some
relations of interest.

Relation between formal descriptions. The following relation must
hold for any service S with input variables i1, . . . , in:

InputEffS,βi v EffS
being βi any valid (as defined by information preconditions) input binding

for S. This means that the set of effects achievable for valid input values
will be a (not necessarily strict) subset of the set of effects of the service
capability.

Descriptions associated to categories. Categories can be seen as
pre-defined, coarse-grained views of service capabilities: they also describe
the capability of a service but with an accuracy restricted by the categories
defined at available taxonomies. In fact, categories can and will be associated
in our model a formal description of the capability they represent. For exam-
ple, the FlightBooking category used in Listing 1 is associated the following
definition of its possible effects (in DL syntax):

EffFlightBooking ≡ Booking u ∃ofItem u ∀ofItem.F light

The formalization above corresponds to the set-based modelling of the
effects associated to the category, and it will be limited in expressivity to
WSML-DL+. The categorization of a service can be thus seen as a coarse-
grained description, with an associated formal meaning, of its capability.
Furthermore, categories can also be associated a textual description and
a prototypical formal description of information preconditions and input-
dependent effects. For example, it is usual for the booking of flights that the
details of the flight to be booked must be given, as well as the details of the
person for which a seat must be booked and a payment method. The effect
will generally be the booking of a seat on the flight given, for the person
given, and paid with the payment method specified.

11

3 Types of descriptions of goals

Consumers are interested in locating and using certain services because they
can provide effects that solve a given consumer’s need. For example, a con-
sumer might need to fly from Madrid to Munich, and he will be interested
in locating a service that can provide the booking of a seat on an appro-
priate flight. For locating services, consumers’ objectives must be explicitly
described, as presented in this section.

3.1 Description of effects

The first thing that must be described by a consumer is the set of effects
he wants to achieve by using a service. In describing these effects, the same
alternatives currently considered for the description of service capabilities
are applicable: the consumer can describe the effects desired using natural
language, giving a list of categories sought services must belong to, i.e., a
coarse-grained view of the capability a service must have, or formally de-
scribing the set of effects desired and the intention of such description (all
the effects in the set described are required or only some of them). For ex-
ample, if a consumer wants to book a flight flight1234 (a flight from Madrid
to Munich, operated by air, about which consumer has previously obtained
information by using a flight search service), for passenger Ruben Lara, and
paid with a DummyCard, the concept formalizing the set of effects required
will be defined as (in terms of domain ontologies in ODL):

EffMyFlightBooking ≡ Booking u ofItem.{flight1234} u forPerson.{rubenLara} u
∃withPaymentMethod u ∀withPaymentMethod.DummyCard

The objectives of a consumer are modelled by a WSMO goal [10], as
shown in Listing 2. This example goal describes the categories sought services
must belong to (category non-functional property of the goal capability),
the textual description of consumer’s objectives (description non-functional
property of the goal capability), and the formal set of effects expected with
its corresponding intention (postcondition of the goal capability). The formal
description of effects is restricted, as for services, to WSML-DL+, and in the
example only some effect in this set is required, i.e., the booking of one seat
with these characteristics is enough, as expressed by the value some of the
associated intention.

3.2 Selection of filters

The second ingredient in the description of a goal is the level of accuracy ex-
pected from the results of the location process. In particular, the consumer

12

can choose to apply different filters to obtain services that can provide the
effects required. These filters are split into two groups: 1) filters that can be
applied by the registry where services are published (Section 4), without con-
sidering what input values can be provided by the consumer and, therefore,
without evaluating information preconditions and input-dependent effects,
and 2) filters whose application must be done once service descriptions are
retrieved from the registry, i.e., at the consumer side and considering what
information the consumer has available for providing input values to the ser-
vice. Selected filters are encoded by the filter non-functional property of the
goal capability. Details of the filters currently available in our model can be
found in Sections 5 and 6.

goal ”http://www.afi.es/MyFlightBookingGoal”
capability MyFlightBooking
nonFunctionalProperties

afi#category hasValue ”http://www.afi.es/Taxonomy1#FlightBooking”
dc: description hasValue ”Booking of a seat on flight flight1234 from Madrid to Munich,

paid with a DummyCard”
afi#filter hasValue {”Capability”, ” InputAvailability ”}

endNonFunctionalProperties

postcondition
nonFunctionalProperties

afi#intention hasValue ”some”
endNonFunctionalProperties
definedBy

?x memberOf Eff MyFlightBooking equivalent
?x memberOf Booking[ofitem hasValue flight1234, forPerson hasValue rubenLara] and
exists ?cc(?x[withPaymentMethod hasValue ?cc]) and
forall ?cc(?x[withPaymentMethod hasValue ?cc] implies ?cc memberOf DummyCard).

Listing 2: Excerpt of the description of an example goal

3.3 Input information

If filters involving the evaluation of possible input values for the service are
selected (see Section 6), we will require a knowledge base KB to be defined.
This knowledge base will contain the information the consumer knows and
he is willing to disclose for achieving the described effects. This information
will be defined in terms of domain ontologies O and thus, will consist of
instances of WSML-Core concepts and properties.

KB will contain consumer knowledge such as user accounts, credit cards,
personal details, etc., as well as other information such as the details of
the flight flight1234 referenced in the formalization of effects in Listing 2.
This knowledge base will be kept at the consumer’s side, as it can be big in
volume and it can include consumer’s sensitive information e.g. credit card
details which should not be disclosed to the registry or to any third-party at

13

location time [21]. In our current prototype, KB is implemented as a Flora-
22 knowledge base containing consumer knowledge as instances of ontologies
in O. This knowledge base will be queried as described in Section 6.

In a nutshell, goals are defined by describing the effects desired, plus the
filters that must be applied for finding relevant services. Additionally, if
filters involving the evaluation of input values are selected, a knowledge base
KB containing the information the consumer knows and which can be used
to provide input values to relevant services must be in place.

4 Description and publication process

For services to be located they must be first described and their descriptions
published so that potential consumers have access to them. In our model, we
require the existence of a registry where service descriptions can be published
and accessed by consumers and which, more specifically, can: a) process
and store all the possible types of descriptions of a service considered, b)
provide facilities for the location and retrieval of service descriptions based
on the application of different filters over such descriptions, and c) define and
manage reusable taxonomies of service categories.

We have designed and implemented a registry (see Figure 2), partly based
on [30], which stores the descriptions of services discussed in Section 2 and al-
lows for the application of filters over these descriptions and the descriptions
of goals introduced in Section 3. This registry is conceived as an extension
of a UDDI repository with improved service location capabilities based on
the types of descriptions introduced in previous sections. Still, we allow for
the direct usage of the UDDI API of the UDDI repository [6] in order to
keep backwards compatibility with current service infrastructure and prac-
tices. In this way, consumers can choose between locating services directly
using the UDDI API, and using the new location interface and the enhanced
capabilities added on top of the UDDI repository.

In addition, the description of goals and services can be a challenging task
for users. For this reason, we have incorporated service and goal description
assistants, integrated in a service location client installed at the consumer
side (see Figure 3), which interacts with the registry in order to support the
description of services and goals by users.

In this section, we first present how taxonomies of categories are pub-
lished and managed in our registry, as they have a prominent role in the
categorization of services and in supporting users in describing services and

2http://flora.sourceforge.net

14

goals. Then, we describe the type of support offered to users in the descrip-
tion of services, and how service descriptions are published at our registry.
Finally, we present how consumers are supported in describing their goals.

4.1 Taxonomies of categories

Our registry includes a taxonomy manager for the definition and management
of taxonomies of categories, as shown in Figure 2. This manager allows for
the following main operations, accessible as WSDL services:

Taxonomy creation. A new taxonomy must be given a URI for its
identification. The manager stores it in the relational database used for
persistency of the registry, creates a new UDDI tModel representing the
taxonomy at the UDDI repository of the registry (jUDDI3 has been used),
and creates a TBox [26] in the DL reasoner of the registry (Racer [15] is used)
whose name is the URI of the taxonomy.

Category creation. A name must be given to the new category, together
with the URI of the taxonomy it belongs to, a textual description of the ca-
pability this category represents, a formal description of such capability and,
optionally, a formal description of prototypical information preconditions and
input-dependent effects associated to the category (see Section 2.3). All these
elements will be stored in the relational database of the registry.

Previously to the storage of the elements above, the satisfiability of
the concept formalizing the effects associated to the category e.g. concept
EffFlightBooking in Section 2.3 is checked. If the concept is satisfiable, it is
published at the TBox whose name is the URI of the taxonomy the category
belongs to e.g. http://www.afi.es/Taxonomy1, and the TBox is classified, i.e.,
the subsumption relation between the categories of the taxonomy, in terms
of their associated formal capabilities, is computed4. The classified TBox
will therefore correspond to a general-special hierarchy of the categories in
the taxonomy, and this hierarchy will be stored in the relational database of
the registry so that it can be later queried.

Checking satisfiability of concepts is NExpTime complete for the
SHOIN Description Logic [24], as it is classification of a TBox, which can

3http://www.juddi.org
4Strictly speaking, Racer only offers sound and complete reasoning for SHIQ and,

therefore, nominals must be translated into pair-wise disjoint concepts before they are sent
to the reasoner. Some incorrect inferences can be drawn from the resulting translation [16],
but in most cases the subsumption and satisfiability relations computed will be correct.
Recently, a sound and complete reasoning procedure for SHOIN has been implemented
in the Pellet (http://www.mindswap.org/2003/pellet/) reasoner; testing the use of Pellet
instead of Racer will be part of our future work.

15

Figure 2: Registry architecture

be reduced to the reasoning task of checking satisfiability. Therefore, the
times for creating a category can be high. Still, as this task is done off-line,
i.e., without affecting service location times, it is not time-critical.

Category search. Two types of search of categories are supported: 1)
given a textual description of a capability, and based on keyword matching,
the categories whose associated textual description match the description
given are returned, and 2) given a formal capability description in the form
of a WSML-DL+ concept, the categories whose associated formalization of
effects is equivalent, subsumed by, subsumes, or intersects the concept given
are returned; this is done by querying the different TBoxes of the DL reasoner
where categories are classified. Elements within each category are not ranked,
but future extensions can incorporate a ranking based on e.g. [27].

4.2 Describing services

A provider will give a description of its service as a WSMO service, via the
user interface of Figure 3, to a publication coordinator for its publication
at the registry. Depending on the profile and skills of this provider, the
WSMO service given will include certain types of descriptions of the service
but not others e.g. will provide a categorization of the service but not a
formalization of its capability. However, the more types of descriptions of the
service are given, the more alternative matchmaking mechanisms (filters) we
will be able to apply to locate this service (see Table 1). Therefore, if some
types of descriptions of the service are not given the publication coordinator
will, in cooperation with the service description assistant (see Figure 3),
automatically propose to the user missing types of descriptions of his service
based on the types of descriptions the provider has given.

In the following, we discuss the support mechanisms offered for the types

16

Applied filter Type of description of goal required Type of description of service required
Textual Textual description Textual description
Category Categorization Categorization
Capability Formalization of effects Formal capability

Input availability Consumer KB Information preconditions
Parameterized effects Consumer KB + formalization of effects Input-dependent effects

Table 1: Descriptions required for the application of different filters

of descriptions of services considered, which will be applied in the order
presented.

4.2.1 Proposing categories

A provider can give a categorization of its service either manually or using
the client user interface in Figure 3 to browse the taxonomies of categories
available at the registry and select one or more of these categories. Still, if
the WSMO service submitted to the publication coordinator does not contain
the service categorization, we can propose categories the service might belong
to by exploiting category search capabilities of the registry.

Proposal based on a formal capability. If a formal description of the
service capability is given, but not its categorization, we can issue a category
search request to the taxonomy manager to find and propose categories re-
lated to such capability. If we consider the service in Listing 1, the concept
EffAirBooking will be used by the taxonomy manager to query TBoxes storing
taxonomies of categories for those categories whose associated formalization
of effects is equivalent, subsumes, is subsumed by, or intersects this concept.
The obtained categories have, thus, an associated set of effects related to the
set of effects offered by the service, and they will be returned as the response
to the search request, together with what particular relation they have to the
service capability given.

The service provider is thereby proposed categories related in differ-
ent ways to his service, and he can select one or more of these cate-
gories. For example, if the search request is issued with the capabil-
ity formalized by concept EffAirBooking, the TBox defined for taxonomy
http://www.afi.es/Taxonomy1 will be queried and the FlightBooking cate-
gory will be proposed to the provider as a category whose associated set of ef-
fects subsumes, i.e., is more general than the set formalized by EffAirBooking.

Proposal based on a textual description. If a textual description
of the service is available, it can be sent to the taxonomy manager for a
keyword-based category search. Returned categories are proposed to the
service provider, who can choose to which ones his service will be assigned.

17

Figure 3: Client architecture

Summarizing, if the categorization of a service is not given by its provider,
we will propose categories related to this service using both mechanisms
above, if possible. However, if the proposal of categories based on the formal
description of the service capability is feasible, we will recommend to the
provider the selection of categories proposed in this way, as results of category
search based on formal capabilities are more accurate.

4.2.2 Using categories to generate other descriptions

If the provider gives the categorization of his service (directly, by browsing
available taxonomies, or by selecting some categories from the ones proposed
as discussed above), we can use such categorization to propose missing types
of descriptions of the service: we retrieve the textual description, the ca-
pability description, and the description of information preconditions and
input-dependent effects associated to these categories, if available, and pro-
pose them for the missing types of descriptions of the service.

For example, let us imagine a provider gives a WSMO description of
his service only including its categorization under category FlightBooking.
In this case, we can propose the formal descriptions associated to the cat-
egory (capability, information preconditions, and input-dependent effects),
as well as the textual description of the category, for describing the service.
The provider can later refine these proposed formal and textual descriptions,
leading to e.g. the description in Listing 1.

18

4.3 Publishing services

A service provider, possibly after receiving the support of the service de-
scription assistant, will have a WSMO description of his service ready for
publication, which might include certain types of descriptions but not oth-
ers. In this section, we present how this description is stored and processed
by our registry for its posterior retrieval.

4.3.1 Consistency of descriptions

When a WSMO service is submitted to the publication manager of the reg-
istry by the publication coordinator of the client, the first thing done by the
publication manager is checking the consistency of formal descriptions of the
service. For that purpose, the DL reasoner of the registry is used to evaluate
the satisfiability of the concept defined as the conjunction of: a) the formal
description of the service capability, and b) the union of the formal sets of ef-
fects associated to service categories. In this way, we are evaluating whether
the sets of possible effects formalized by different types of descriptions are
not contradictory, i.e., have a non-empty intersection. While checking con-
cept satisfiability for WSML-DL+ (SHOIN) is NExpTime-complete and,
thus, time consuming, this task is not time critical.

4.3.2 Storing and processing descriptions

After checking consistency of the descriptions of a service S, the publication
manager will create a business service [6] at the UDDI repository. Further-
more, the WSMO description of the service and, separately, each type of
description of the value of the service contained in the WSMO description,
will be stored in the UDDI repository using tModels created for that pur-
pose and associated to the business service created via keyed references [6].
Furthermore, the categories given for the service will be stored as the values
of category bags of the business service [6] using the tModels created for
the taxonomies these categories belong to, and the textual description of the
service will be stored as the name of the business service. In this way, service
descriptions will be directly accessible via the UDDI API.

Afterwards, the WSML-DL+ concept formalizing the set of effects asso-
ciated to the service capability e.g. EffAirBooking for the service in Listing 1,
is sent to a TBox of the DL reasoner of the registry, named Services, and this
concept is classified with respect to the TBox. Published services are thus
arranged in a subsumption hierarchy in terms of the results they can provide,
independently of input values. The classification of the TBox is done when

19

publishing the service as publication is not time critical, and this classifica-
tion will reduce the times necessary to apply one of the filters described in
Section 5. It must be noticed that the usage of a DL reasoner for classifying
services in a subsumption hierarchy and later efficiently querying this hier-
archy is possible thanks to the restriction in the expressivity of capability
descriptions introduced in Section 2.

4.4 Describing goals

In order to locate appropriate services, consumers must explicitly describe
the effects required from the usage of a service, the filters to be applied
for its location and, in some cases, define a knowledge base containing the
information available as possible input values for services. In general, a
consumer will describe a WSMO goal including certain types of descriptions
but possibly not others, as well as the filters to be applied for goal resolution,
and will possibly inform of the location of a knowledge base containing the
information he has available.

Different filters require different types of descriptions of the consumer
goal and of published services for their application, and some also require a
consumer knowledge base to be defined. For this reason, when the consumer
goal is submitted to the location coordinator of the location component (see
Figure 3) for its resolution, this coordinator will first check whether the
necessary types of descriptions of the consumer objectives have been given
for the application of the selected filters. The relation between selected filters
and required descriptions is given in Table 1.

If the types of goal descriptions required for the application of selected
filters are not available, the goal description assistant of the location com-
ponent will warn the user and automatically propose missing types of de-
scriptions. In particular, we can propose categories starting from a textual
description or from a formal description of the effects required, in the same
way categories were proposed for the categorization of services (see Section
4.2). Furthermore, we can use the descriptions associated to categories given
with the goal to propose a textual description and a formal description of
consumer’s objectives.

As we can see, if some type of description of consumer’s objectives, neces-
sary for the application of the selected filters, is not available, we will support
the consumer in providing it by proposing the missing type of description.
Still, the consumer can modify the proposed descriptions in order to make
them more accurate. Additionally, if the consumer knowledge base has not
been given and it is necessary for the application of the filters selected, the
consumer will be required to give its location.

20

It must be noted, though, that we only propose the types of descriptions of
a goal necessary for the application of selected filters, not missing information
for completely matching candidate services in the way proposed in [8].

5 Registry-side Filters

When the consumer submits his goal for resolution to the location coordina-
tor of Figure 3, and if the necessary types of descriptions for the application
of the selected filters are available, the coordinator will first send this goal
to the location manager of the registry. This manager will apply the registry
filter selected by the user, and relevant services will be retrieved from the
registry; currently, one of three alternative filters can be applied for retriev-
ing services from the registry, namely: a textual filter, a category filter, or
a capability filter. From these, the least expensive filter but also the least
accurate will be the textual filter; the capability filter, which exploits formal
descriptions of the set of effects associated to the service capability, will be
the most expensive and also the most accurate one.

5.1 Textual filter

If the textual filter has been selected, indicated by the textual value of the
filter property of the goal, a simple keyword-based matching of the textual
description of consumer objectives against the textual descriptions of services
published at the registry will be performed, and services matching some of
the keywords in the goal textual description will pass this filter.

The application of this filter will provide results in very short times, as
only a simple query over the registry database will suffice to find relevant
services. Furthermore, the filter only requires a type of description of services
and goals which is easy to provide by users. However, the precision of the
results provided is limited, and we currently do not distinguish different levels
of match (all services that pass the filter are considered a perfect match).

5.2 Category filter

If the category filter is selected, the location manager extracts the categories
specified by the category non-functional property, which are the categories
sought services must belong to (interpreted as a logical and). The hierarchy
of the taxonomies these categories belong to, stored in the registry database
(see Section 4) and of which a copy is kept in memory for fast access, will
be queried for: a) categories more general (parents), and b) categories more

21

specific (children) of the categories given. We will consider a service to be a
perfect match if it has been assigned to all the categories given by the goal
or to parents of these categories. Services not fulfilling this condition but
belonging to some category given by the goal, or to a parent or children of
such a category, will be considered a partial match.

If we consider the goal in Listing 2, services belonging to category Flight-
Booking or to more general categories e.g. TransportBooking at taxonomy
http://www.afi.es/Taxonomy1 will be considered a perfect match, and ser-
vices belonging to more specific categories e.g. LowCostFlightBooking will
be considered a partial match.

In order to apply the filter as explained above, only simple lookups over a
copy of the taxonomies published, which is kept loaded in memory together
with a relation of what services are assigned to what categories in such tax-
onomies, will be done and, thus, response times obtained are low. While
results will be provided in short times, and based on the use of categories in-
tuitive for end-users, they will be coarse-grained, as the granularity of results
will be limited by the granularity of the categories defined.

5.3 Capability filter

If the capability filter is selected, the concept formalizing the set of effects
required by the consumer will be used for matching services whose set-based
modelling of capability effects relates in some way to this concept. However,
before the goal is submitted to the registry, instances not in domain ontologies
ODL must have been substituted by their definitions in terms of concepts,
relations and instances in domain ontologies, as otherwise the description
will not be processable by the registry.

For example, if we consider the goal in Listing 2, instances flight1234
and rubenLara must be replaced by their definitions in the formalization of
the set of effects required:

EffMyFlightBooking ≡ Booking u ∃ofItem u ∀ofItem.(Flight u
hasOrigin.{madrid} u hasDestination.{munich} u operatedBy.{air}) u ∃forPerson u
∀forPerson.(Person u countryOfResidence.{spain}) u ∃withPaymentMethod u
∀withPaymentMethod.DummyCard

For a goal G, the location manager will query the Services TBox of the DL
reasoner of the registry for concepts: a) equivalent to, b) more general than,
c) more specific than, and d) with a non-empty intersection with concept
EffG. Therefore, concepts defining a set of effects related in some way to
the effects required are located. Once these concepts are retrieved, we will
use the criteria in [18] to determine, taking into account intentions and the
relation between the set defined by these concepts and the set of effects

22

required by the goal, as shown in Table 2, which of them are a perfect,
possible perfect, partial, or possible partial match for the goal.

In Table 2, IS denotes the intention of the service capability, IG the in-
tention of the set of effects formalized by the goal, EffS the formalized
capability of the service, and EffG the formalized set of effects expected
by the consumer. Notice that the set-theoretic relations used in the table
correspond to the subsumption relations obtained between the WSML-DL+
concepts formalizing the sets the table refers to.

A perfect match (Match) means that the effects required by the con-
sumer can be provided by the service. For example, if the consumer only
requires some effects from the set formalized (IG = some), the service offers
all the effects in its formalized capability (IS = all), and the sets have a non-
empty intersection (EffG ∩ EffS 6= ∅), we can be sure that the service can
offer some of the effects in the set described by the consumer and, thus, com-
pletely satisfy the consumer’s needs. A partial match (PMatch) means that
only part of the effects required by the consumer are offered by the service.
A possible match (poMatch) means that there might be a perfect match,
but we cannot guarantee it. For example, if we have that the service offers
only some of the effects in the set formalized by its capability (IS = some),
the consumer requires all the effects described (IG = all), and the relation
between sets is EffG ⊂ EffS , it might be the case that the effects in the
set EffS provided by the service are precisely those in the set EffG, but we
have no guarantee of it and it can turn out to be a partial match or a non-
match. A possible partial match (ppMatch) refers to the situation where
there might be a partial match between the set of effects required by the goal
and offered by the service, but we have no guarantee of it and it can turn
out to be a non-match. Finally, a non-match (NoMatch) refers to cases in
which the service does not offer any of the effects required by the goal, i.e.,
in which the service cannot contribute at all to solve the consumer’s goal.
The application of the filter will, therefore, result in four sets of matching
services, one per type of match.

Figure 4: Times for the application of the capability filter

23

Intention
of G / S IS = all IS = some

IG = all

EffG = EffS Match

EffG ⊂ EffS Match

EffG ⊃ EffS PMatch

EffG ∩ EffS 6= ∅ PMatch

EffG ∩ EffS = ∅ NoMatch

EffG = EffS PMatch

EffG ⊂ EffS poMatch

EffG ⊃ EffS PMatch

EffG ∩ EffS 6= ∅ ppMatch

EffG ∩ EffS = ∅ NoMatch

IG = some

EffG = EffS Match

EffG ⊂ EffS Match

EffG ⊃ EffS Match

EffG ∩ EffS 6= ∅ Match

EffG ∩ EffS = ∅ NoMatch

EffG = EffS Match

EffG ⊂ EffS poMatch

EffG ⊃ EffS Match

EffG ∩ EffS 6= ∅ poMatch

EffG ∩ EffS = ∅ NoMatch

Table 2: Degree of match taking into account intentions

As the TBox queried for retrieving matching services has been already
classified when publishing services, and as the definition of service capabilities
and required effects is restricted to the SHOIN DL, existing DL reasoners
can provide responses to the queries over the TBox in relatively low times.
For estimating response times, we have generated 2000 random variations of
the capability of the service in Listing 1, describing the capability of booking
flights operated by different airlines, for different itineraries (restricted to
certain cities, countries or continents), and with different payment methods,
and we have also introduced services that offer different actions not related to
flight booking. The times measured, using a computer with an Intel Pentium
4 2.8GHz processor and 1GB RAM, are shown in Figure 4 as a function of
the number of services published. A remark is in place: querying Racer for
equivalent, more general or more specific concepts yields response times below
20 milliseconds for 2000 services published (see [21]), while querying for non-
intersecting concepts (in order to afterwards obtain intersecting concepts) is
the most time-consuming operation. The reason is that the algorithms used
by DL reasoners to classify the TBox are optimized to compute hierarchical
relations and they do not pre-compute disjoint classes.

The application of this filter will be considerably more time-consuming
than the other filters previously presented. Furthermore, it relies on formal
descriptions which are more difficult to provide by users, although this diffi-
culty is reduced by the use of the description assistants presented. However,
the description of relevant sets of effects can be much more accurate than the
textual description or the categorization of a service or goal, and the results

24

obtained from the application of this filter will be more accurate.
If we compare the notions of match used by works which base the match-

ing of services and goals on DL reasoning, in [28] and [22] the following
notions are employed: a) exact, corresponding to equivalent concepts, b)
plug-in, corresponding to capabilities more general than (subsuming) goals,
c) subsumes, corresponding to capabilities more specific than (subsumed by)
goals, d) intersection (only considered in [22]), corresponding to capabilities
and goals with a non-empty intersection, and e) failed matches, corresponding
to non-intersecting concepts. Both works focus on the matching of OWL-S
inputs and outputs, and they implicitly assume a universal intention in the
descriptions used. Given this assumption, we can establish a rough mapping
of the degrees of match used by our capability filter to those proposed by
these works: an exact match and a plug-in match can be mapped to a per-
fect match in our model, a subsumes match to a partial match, and a failed
match to a non-match only when both concepts do not intersect; otherwise,
we consider this case a partial match. In [27], three notions of match are dis-
tinguished: a) an exact match, which corresponds to equivalent concepts, b)
a potential match, meaning that some aspects of the request are not specified
in the offer, but the concepts intersect, and c) a partial match, meaning that
some aspects of the request are in conflict with the offer (non-intersecting
concepts). In general, an exact match as defined in [27] corresponds to a
perfect match in our model independently of the intentions associated; a
potential match can correspond to a perfect match, to a possible match, to
a partial match, or to a possible partial match in our model depending on
the intentions associated to the concepts evaluated and on the particular
subsumption relation which may hold; and a partial match corresponds to a
non-match in our setting. Still, none of these works allows for the explicit
association of intentions to the DL concepts used to model offers and needs.

After applying one of the filters above, chosen by the consumer, the
complete WSMO descriptions of matched services will be obtained from the
UDDI repository and returned to the location client.

6 Consumer-side Filters

After applying a registry-side filter, the description of services that can ful-
fill the consumer goal are retrieved from the registry and returned to the
location coordinator. In particular, four sets of service descriptions are re-
trieved, corresponding to the different notions of match discussed in Section
5 (remember that, if the textual filter is applied, all matched services will be
perfect matches and, if the category filter is applied, only perfect and partial

25

matches are distinguished). If no consumer-side filter is selected, the loca-
tion coordinator directly provides these service descriptions to the consumer.
Otherwise, the two consumer-side filters currently available can be succes-
sively applied in order to narrow down the set of relevant services obtained,
namely: an input availability filter and a parameterized effects filter.

6.1 Input availability filter

Besides checking whether a service is relevant for solving a consumer’s goal
in terms of its capability, the consumer might want to know whether the
information preconditions of the service can be fulfilled, i.e., whether the
consumer has appropriate information available to be submitted to the ser-
vice as input values.

For this purpose, we will use the information preconditions of services
retrieved from the registry as queries to the knowledge base KB containing
consumer knowledge, i.e., we query for valid input values for the service. Pre-
conditions are expressed as WSML-Flight queries (see Section 2.2) and, thus,
they have LP semantics. As discussed in [21], LP semantics are appropriate
in this setting as we want to determine whether valid input values can be
provided to the service from knowledge base KB (closed world), i.e., whether
the consumer has available appropriate information to be provided as input
values to the service. Furthermore, for obtaining valid input values we are
only interested in efficient query answering, not in general entailment.

As an example, let us consider the goal in Listing 2. After submitting
the goal to the registry, the service AirBooking described in Listing 1 will
be retrieved as a perfect match for the goal as, according to its capability
formalization, it can provide the flight operated by airline air required for the
passenger indicated. We will then evaluate at the consumer side, once the
description of the service is retrieved from the registry, whether the consumer
has appropriate information in his knowledge base to be provided as input
values to the service.

Let us imagine knowledge base KB contains two instances myCC and
myCC2 of DummyCard, corresponding to consumer’s credit cards, as well
as instances rubenLara and flight1234, containing the details of the pas-
senger and the flight operated by air for which a booking is to be made,
respectively. We can use the formalization of information preconditions of
the retrieved service as a query to KB, obtaining two possible valid in-
put bindings: β1 = {f = flight1234, p = rubenLara, cc = myCC} and
β2 = {f = flight1234, p = rubenLara, cc = myCC2}. Therefore, we can
conclude that the consumer can provide valid input bindings for using the
service and, thus, this service will pass the filter.

26

Input availability will act a boolean filter, i.e., the information require-
ments of a service will be fulfilled or not. However, as we allow providers to
publish services with different level of detail in their description, there might
be services retrieved from the registry which do not describe their informa-
tion preconditions. Therefore, the filter will yield: 1) services that passed
the filter, and 2) services to which the filter could not be applied. Services
will be grouped into these categories and, if no other filter has been selected,
their complete WSMO descriptions will be returned to the consumer along
with their degree of match given by the application of registry-side filters.

It must be noted that query answering for WSML-Flight can be done in
polynomial time [9]. In our prototype, the knowledge base KB, implemented
as a Flora-2 knowledge base, is defined before any goal is issued to the service
location component. Therefore, it is already compiled and loaded when a
goal has to be resolved, which makes querying for valid input values using
the definition of information preconditions of the service efficient (less than 50
milliseconds for a knowledge base with more than 14000 randomly generated
facts, according to out tests).

6.2 Parameterized effects filter

As discussed in Section 2, there is a dependency between service effects and
the input values provided by the consumer. If the parameterized effects fil-
ter is selected, we will not only check whether the customer has available
appropriate information for providing valid input bindings for services re-
trieved from the registry, but also how the set of effects that can be obtained
depends on such bindings.

In particular, after the application of the input availability filter we will
obtain, for each service S which passed the filter, a set Σ = {β1, . . . , βn}
of valid input bindings for the service. Each binding βi from this set can
be used to execute this service, leading to the obtention of a certain set
of effects EffS,βi

which is defined by substituting input variables by the
corresponding values in the input-dependent formalization of effects of the
service (see Section 2.2).

If the consumer would execute the service for each valid input binding he
can provide, the set of effects that could be obtained is defined by the union
of the sets of effects obtainable for each input binding, i.e., by the union
EffS,Σ ≡ ⊔

∀βi∈Σ EffS,βi

If we continue with the example above, in which the set of input bindings
Σ = {β1, β2} was obtained for service AirBooking, the set of effects that can
be achieved by using the service with these input bindings is defined by:

InputEffAirBooking,Σ ≡

27

(Booking u ofItem.{flight1234} u forPerson.{rubenLara}) u
withPaymentMethod.{myCC})t

(Booking u ofItem.{flight1234} u forPerson.{rubenLara}) u
withPaymentMethod.{myCC2})

The concepts obtained in this way for each relevant service retrieved from
the registry will be published at the TBox of the DL reasoner used by the
service location component (Figure 3). The location coordinator will then
query for concepts: a) equivalent to, b) more general than, c) more specific
than, and d) intersecting the formalization of the set of effects expected by
the goal. Table 2 will be again applied, yielding the list of services that are
a perfect, possible perfect, partial, or possible partial match for the goal for
the input values available. In a nutshell, we obtain services that offer, for
the input values available, the effects expected by the consumer, considering
how these effects depend on the input values provided.

As some services might not describe input-dependent effects, the service
location coordinator returns to the consumer: 1) services that passed the
parameterized effects filter, 2) those that passed the input availability filter
but to which the parameterized effects filter could not be applied, and 3)
those to which none of the filters could be applied. Services will be grouped
into these categories, and their complete descriptions will be returned to the
consumer along with their degree of match.

Response times for the application of this filter are expected to be rel-
atively high. The reason is that the publication, for its posterior querying,
at the TBox of the DL resoner of concepts EffS,Σ which model the set of
effects obtainable from each relevant service S for particular input bindings
Σ is done at run-time. Thus, the TBox of the DL Reasoner cannot be fully
classified before-hand in order to reduce the response times of querying this
TBox. While we expect most services to be discarded by previous filters so
that not many services have to be evaluated in this way, the times required
are still high e.g. around 60 seconds for 500 services evaluated.

By applying consumer-side filters, we can evaluate whether there are in-
put values available satisfying information preconditions, as well as whether
the effects obtainable for such values can achieve the consumer’s goal. How-
ever, real world preconditions and their influence on service effects are not
considered. The reason, as explained in [21], is that the location process will
generally not have access to the information required to evaluate precon-
ditions. For example, let us imagine our flight booking service requires the
availability of a free seat on the flight given. The fulfillment of this real world
precondition might not be directly checkable by the location process, as it
is information generally known by the service provider. Therefore, for the
evaluation of this condition, the location coordinator would have to locate

28

a service that informs of the availability on the required flight, and would
have to execute it. Furthermore, this service could in turn require the evalu-
ation of some additional real world preconditions. Therefore, we would have
a situation in which the recursive location and execution of services might
be required for finding a service that can solve a consumer goal, which is not
desirable.

7 Related Work

Most service location proposals are based on the semantic matchmaking of
services and goals based on DL subsumption reasoning e.g. [3, 22, 28] fo-
cusing on a single logical filter and not considering the usage of alternative
filters. In general, these works only describe the type of input values ex-
pected and the type of effects offered by services, without describing how
they relate. Goals describe the type of input values that can be required by
available services and what effects must be offered by these services. These
descriptions of inputs and effects, given by services and goals, are compared
in order to find services usable to achieve the goal. However, we believe this
treatment of inputs is closer to a signature matching than to a matchmaking
based on the functionality of services.

Furthermore, consumers are expected to explicitly describe in advance,
as part of their goals, the type of input values they can provide for achieving
the effects desired. This requires consumers to anticipate what type of input
values might be required by relevant services. On the contrary, we believe in
most cases consumers will want to find services which can provide the effects
required and which can be executed, i.e., the primary concern of a consumer
is to obtain some effects from the execution of a service, which requires hav-
ing appropriate input values for this execution; consumers will not require a
fixed input signature from the service, as long as they can execute the service
with the information they have available. For this reason, we have introduced
our input availability and parameterized effects filters, which enable a type of
matchmaking different from what existing works propose. Still, the matching
of the input signature of services might be interesting for location of services
at design-time and their composition or integration into more complex sys-
tems or processes, where a service not only providing a certain capability
and functionality, but also with a given signature, might be required. For
this reason, we envision the extension of our model to include this type of
signature matching, which will require the description, as part of the goal,
of the type of inputs that can be required by services.

On the other hand, the works presented in [17] and [19] take into account

29

how the effects of executing a service depend on the input values provided to
it. The former makes use of Transaction Logic [4] and Logic Programming,
which presents some problems with the treatment of unspecified information
in goals and service capability descriptions. The latter, based on Description
Logics, expects customers to explicitly describe what kind of relation they
expect between effects and inputs, which we believe is a less usable approach
than that taken by our model.

The only approaches we are aware of that apply different types of filters
are LARKS [31] (for the matchmaking of agents) and OWLS-MX [20] (for
the matchmaking of OWL-S services). While they are close in spirit to our
model, allowing for the application of different types of filters, they differ in
the following major respects: a) logical filters only work over descriptions
with first-order semantics, b) whether the customer can actually provide ap-
propriate input values is not evaluated, c) how particular input values affect
the set of effects that can be obtained is not considered, d) all matchmaking
is done at the registry side, and e) customers are not supported in describ-
ing goals and services. However, it must be noted that filters based on the
matching of textual descriptions described by [20] (or [12]), could be incorpo-
rated to our model as registry-side filters in order to offer more fine-grained
results than those currently provided by our simple keyword-based filter.

In a nutshell, we are not aware of any work on the location of services with
all the features of our model and prototype, especially with respect to the
consideration of alternative types of descriptions of services and goals, the
offer of filters with different trade-offs between accuracy and efficiency, the
assistance to users in describing their services and goals, and the treatment
of input values and how effects of the service depend on such values.

8 Conclusions

The increase in the number of services defined, as a consequence of the grow-
ing adoption of the SOA paradigm, requires appropriate facilities for the
location of services with a certain value. Furthermore, a model for the lo-
cation of services must be flexible in the kind of descriptions of artifacts
expected, as well as in the matchmaking mechanisms users can apply for
locating services that can solve a given goal. Last, but not least, the task
of describing services and goals must be supported so that users can face it
with guarantees.

For all these reasons, we have have elaborated a model and implemented
a prototype that accommodates different types of descriptions of services and
goals, enables the selection of filters with different properties for obtaining

30

services so that results can be obtained with different trade-offs between
accuracy and efficiency, and incorporates assistants for the description of
services and goals. This results in a model and prototype which are flexible
and usable in different scenarios.

Future work will focus on the optimization of the prototype and on the
incorporation of new filters to the set of filters currently designed and im-
plemented. Envisioned optimizations include the possible adoption of other
reasoners, such as Pellet, in our registry and location client, as well as the
automation of certain tasks which are currently done manually in the pro-
totype, such as the substitution, in the formalization of required effects, of
instances which are not in domain ontologies by their definitions in terms of
these ontologies.

References

[1] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet.
Semantic Web Services Framework (SWSF) overview. Technical report,
W3C submission, September 2005.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Lan-
guage Reference. Technical report, W3C Recommendation, Feb 2004.

[3] B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On au-
tomating web services discovery. VLDB, 14:84–96, 2005.

[4] A. J. Bonner and M. Kifer. Transaction Logic Programming (or, A Logic
of Procedural and Declarative Knowledge). Technical report, University
of Toronto, November 1995.

[5] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
March 2001.

[6] L. Clement, A. Hately, C. von Riegen, and T. Rogers (editors). UDDI
Version 3.0.2, october 2004.

[7] OWL-S Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.1, November 2004.

[8] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello.
Concept abduction and contraction for semantic-based discovery of

31

matches and negotiation spaces in a E-marketplace. Electronic Com-
merce Research and Applications, 4(4):345–361, 2005.

[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and
expressive power of Logic Programming. ACM Computing Surveys
(CSUR), 33(3):347–425, 2001.

[10] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U. Keller,
M. Kiffer, B. Koenig-Ries, J. Kopecky, R. Lara, H. Lausen, E. Oren,
A. Polleres, D. Roman, J. Scicluna, and M. Stollberg. Web Service
Modeling Ontology (WSMO). Submission, W3C, June 2005.

[11] de Bruijn, J. (ed.). The Web Service Modeling Language WSML. WSML
d16.1v0.21, 2005.

[12] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity
search for web services. In VLDB 2004, 2004.

[13] M. Fitting. First order logic and automated theorem proving. Springer
Verlag, 2nd edition, 1996.

[14] B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. In WWW’03,
2003.

[15] Volker Haarslev and Ralf Möller. RACER System Description. volume
2083, 2001.

[16] I. Horrocks and U. Sattler. Optimised Reasoning for SHIQ. In
ECAI 2002, pages 277–281, July 2002.

[17] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens.
Deciding semantic matching of stateless services. In AAAI-06, 2006.

[18] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic
location of services. In ESWC 2005, Heraklion, Greece, May 2005.

[19] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and
D. Fensel. A Logical Framework for Web Service Discovery. In SWSs
Worshop at ISWC 2004, 2004.

[20] M. Klusch, B. Fries, and K. Sycara. Automated semantic web service
discovery with OWLS-MX. In AAMAS 2006, 2006.

32

[21] R. Lara. Two-phased web service discovery. In AI-driven Service Ori-
ented Computing workshop at AAAI 2006, July 2006.

[22] L. Li and I. Horrocks. A Software Framework for Matchmaking Based
on Semantic Web Technology. In WWW’03, Budapest, Hungary, May
2003.

[23] J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-
Verlag, 1987.

[24] C. Lutz. An improved nexptime-hardness result for description logic alc
extended with inverse roles, nominals and countins. Technical report,
Technical University Dresden, 2004.

[25] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter Brown, and
Rebekah Metz (eds.). Reference Model for Service Oriented Architecture
1.0. Technical report, OASIS, 2006.

[26] D. Nardi, F. Baader, D. Calvanese, D. L. McGuinness, and P. F. Patel-
Schneider, editors. The Description Logic Handbook. Cambridge, Jan-
uary 2003.

[27] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mogiello. A system
for principled matchmaking in an electronic marketplace. International
Journal of Electronic Commerce, 8(4):9–37, 2004.

[28] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Match-
ing of Web Service Capabilities. In ISWC 2002, pages 333–347. Springer
Verlag, 2002.

[29] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, D. Fensel, and C. Bussler. Web Service Modeling Ontology.
Applied Ontology Journal, 1(1), 2005.

[30] N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to UDDI, im-
plementation and throughput. In SWSWPC Workshop at ICWS 2004,
2004.

[31] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Match-
making Among Heterogeneous Software Agents in Cyberspace. AAMAS
2002, 2002.

33

