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ABSTRACT
The main goal of a Recommender System is to suggest relevant
items to users, although other utility dimensions – such as diversity,
novelty, confidence, possibility of providing explanations – are
often considered. In this work, in order to increase the amount of
relevant items presented to the user, we analyse how the system
could measure the confidence on its own recommendations, so it
has the capability of taking decisions about whether an item should
be recommended or not. A direct consequence of this design is that
the number of suggested items decreases, impacting in some of
the beyond-accuracy dimensions (especially, coverage). We present
an evaluation of different decision-aware techniques that can be
applied to some families of recommender systems, and explore
evaluation metrics that allow to combine more than one evaluation
dimension. Empiric results show that large precision improvements
are obtained when using these approaches at the expense of user
and item coverage.

1 INTRODUCTION
Recommender Systems aim at suggesting as many relevant items
to the users as possible, although other goals are being considered
recently [? ]: increasing the diversity or novelty of the recommen-
dations, suggesting items in such a way that it is possible to explain
where the recommendation is coming from, increasing the confi-
dence of the user in the system, etc. In this work, we investigate
about confidence but from the perspective of the system: what is
the confidence a system has in its own recommendations; more
specifically, we focus on different methods to embed awareness into
the recommendation algorithms about deciding whether an item
should be suggested. In this way, we hypothesise the system would
only show the more reliable suggestions, hence, increasing the per-
formance of such recommendations, at the expense of, presumably,
reducing the number of potential recommendations.

The concept of confidence in recommendation has been applied
to different aspects in the field. On the one hand, confidence is
defined on the input data, where some authors have studied which
combinations of users or (user, item) pairs let generate better rec-
ommendations, namely the profile-level trust and item-level trust
approaches from [? ], or like in [? ], where it is used to interpret the
confidence when transforming from implicit data (frequencies) into
explicit. On the other hand, we find different mechanisms that help
to contextualise the predictions made by the recommendation algo-
rithms. In this way, in [? ] a factor is defined (significance weighting)
that is combined with the user similarity to devalue those cases
where such similarity has been computed with not enough data. In
a similar fashion, in [? ] a method is proposed to filter out recom-
mendations according to the rating deviation received by the items.
Previously, in [? ], the authors introduced the concepts of support
and confidence in case-based recommenders computed from asso-
ciation rules. In parallel, in [? ] it was studied how to introduce
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confidence measures when presenting the recommendations, that
is, in the interface the user is interacting with. In that work, even
though the confidence metric was very simple (number of ratings
observed by the system for one item) it was enough to increase the
satisfaction level of the user.

In this paper, we study how the performance of a recommenda-
tion algorithm evolves when it decides not to recommend in some
situations. If the decision of avoiding a recommendation is sensible
– i.e., not random but related to the information available to the
system about the target user or item –, the performance is expected
to improve at the expense of other quality dimensions such as cover-
age, novelty, or diversity. This balance is critical, since it is possible
to achieve a very high precision recommending only one item to
a unique user, which would not be a very useful recommender.
Memory-based algorithms are well known for suffering from this
issue: if very few neighbours are considered, the coverage is lower,
but the recommendations are of higher quality (as observed in
terms of error metrics [? ]); whereas larger neighbourhoods may in-
crease the likelihood of receiving a noisy recommendation, but the
chances of recommending more items are also higher. Because of
this, we explore some techniques to combine precision and coverage
metrics, an open problem in the area, as stated by some authors [?
].

In summary, the contributions of this paper are twofold: a tax-
onomy of techniques that can be applied to some families of rec-
ommender systems allowing to include mechanisms to decide if a
recommendation should be generated, and a first exploration to the
combination of precision and coverage evaluation metrics.

2 DECISION-AWARE RECOMMENDER
SYSTEMS

Modifying recommendation algorithms so that they can decide
whether a recommendation should be produced is not an easy
task when formulated in a generic way, because each algorithm
has different characteristics and hypothesis about the input data
and produced suggestions. As a starting point, in this section we
shall focus on one of the main types of recommender systems –
Collaborative Filtering algorithms.

Different from other works in the literature, our approaches do
not exploit or analyse the input data (unlike the works previously
mentioned [? ? ]), but intrinsic aspects of the recommendation
algorithms or of the components used during prediction are consid-
ered, similar to the weights introduced for similarity computation
in [? ]. More specifically, we exploit the support of the prediction
score for nearest-neighbour algorithms (Section 2.1) and the uncer-
tainty in the prediction score for a probabilistic matrix factorisation
algorithm (Section 2.2).

2.1 Based on prediction support
It is well known that, in order to compute scores for (user, item)
pairs, some algorithms use more data than others, depending on
the actual users and items under consideration. A paradigmatic
example of this situation are the nearest-neighbour recommenders.
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These algorithms estimate the user preferences based on similar
users or items, however, it is required that those neighbours have
rated the same item (in the user-based scenario) or that the target
user has rated those similar items (in the item-based case).

Indeed, the number of ratings used to predict the user preferences
(denoted as support) provides an indication of the confidence level
the system has about the produced recommendation, since the
system cannot trust in the same way a score produced based only
on two neighbours or based on one hundred. This is actually the
same idea behind the significance weighting approach proposed by
Herlocker and colleagues in [? ].

Hence, we propose that a nearest-neighbour recommender could
decide that an item is worth a recommendation if at least n
out of the k neighbours have participated in the preference
computation. In other words, a prediction would be ignored if less
than n neighbours have contributed to the prediction score.

2.2 Based on prediction uncertainty
As described in the previous section, some algorithms compute
the prediction scores based on an aggregation of values, usually
an average or a weighted average (such as the aforementioned
neighbour-based recommenders). Whenever an average is being
calculated, it is also possible to compute a standard deviation of
the predicted score. When doing this, the standard deviation can
be interpreted as a confidence parameter of the algorithm about
the score: the larger the deviation, the more uncertainty on the
prediction, and hence, the lower the confidence on it.

Hence, we propose that an algorithm, for which it is possible
to compute the standard deviation of a prediction score, could de-
cide that an item is worth a recommendation if the standard
deviation of the prediction (uncertainty) does not exceed a
specified threshold στ .

More specifically, we apply this approach to a probabilistic ma-
trix factorisation recommender. Although it is possible to apply
this strategy to nearest neighbour recommenders, we found this
approach is less effective for these algorithms, probably because
there is no theoretical formulation for the deviation in those cases.

We describe next how we can compute the standard deviation
of a probabilistic matrix factorisation algorithm. For this, we make
use of a Bayesian approximation for matrix factorisation proposed
in [? ]. In this algorithm, the preference scores are computed by
approximating a distribution, whose average and deviation should
be estimated. Since we need an explicit formulation for the standard
deviation, we derived it using mean-field variational inference:

Var (rui ) = τ
2 + trace

((
ϕu + uu

⊤
) (
ψi + ii

⊤
))
− i
⊤
uu⊤i (1)

where it is assumed the rating follows a normal distribution with
mean u⊤ · i and deviation τ , and ϕu y u represent the covariance
matrix and vector of means for user u; ψi and i denote the same
concepts but for item i .

3 EVALUATING DECISION-AWARE
RECOMMENDER SYSTEMS

As soon as a recommender system has control over which items
should not be recommended for a particular user, it is very likely
that the user coverage and the item coverage decrease, even though
precision and other accuracy-related metrics increase. For instance,
a very high precision could be achieved if an algorithm returns
only one (relevant) item for one user, at the expense of a very low
coverage. Because of this, it becomes very important to study and

define metrics that, somehow, combine precision and coverage,
especially in situations of confidence-awareness like the one we
propose in this paper.

As noted by Herlocker and colleagues in [? ] there is no general
coveragemetric that, at the same time, givesmoreweight to relevant
items when accounting for coverage, and combines coverage and
accuracy measures. Moreover, Gunawardana and Shani mentioned
the problem of balancing coverage and accuracy metrics in [? ],
and leave it as an open issue in the area. We aim to address this
problem by combining the values of the different metrics to be
compared, especially focused on deriving a metric that assess when
a recommender does not return an item.

3.1 F-score or Harmonic Mean
The F-score is an evaluation metric very popular in Machine Learn-
ing to combine precision and recall measures. It produces the har-
monic mean of both metrics, and it ranges between 0 and 1, 0 being
the worst value and 1 the optimal value. Based on this idea, we
propose to combine precision and coverage through the harmonic
mean, whose general formulation is as follows:

Fβ (P ,Q ) = (1 + β2) ·
P ·Q

β2 · P +Q
(2)

where β is used to control the importance of each metric in the final
result: if β = 1 both metrics P and Q have the same importance,
whereas if β < 1 P is more important than Q .

3.2 G-score or Geometric Mean
Instead of using the harmonicmean, we could also use the geometric
mean as follows:

Gα1,α2 (P ,Q ) =
(
Pα1 ·Qα2 )1/(α1+α2 ) (3)

where α1,α2 control the importance of each metric. In general, the
result obtained for the G-score will always be larger (or equal) to
the one obtained for the F-score.

3.3 Correctness
The two metrics defined in the previous sections simply combine
the result of some evaluation measures; however we believe this is
not enough for the problem we want to address. Typical ranking-
based metrics – such as precision – assume that no returning an
item which was previously asked to predict a rating for, is an ad-
vocate of that item being considered as not relevant by a specific
recommendation method. However, this is in contrast with the (de-
sired) situation that a recommender may not provide suggestions
in some situations due to a low confidence in the accuracy of such
predictions [? ? ].

We propose an evaluation metric that is able to assess when
a recommender decides not to recommend a specific item. To do
this, we adapt an extension of accuracy proposed in the context of
Question Answering by Peñas and Rodrigo in [? ]. In that work,
the authors assume that there are several questions to be answered
by a system, each question has several options, but one (and only
one) of those options is correct. If it is possible to give no response
for a given question, this action should not be correct, but not
incorrect either. Hence, the authors propose a general formulation
giving a weight – proportional to the number of correctly answered
questions – to the value of unanswered questions.

To apply this evaluation metric to recommendation, we first
assume that the set of recommenders we want to compare will
receive the same list of items to be ranked, a standard situation



shared by many evaluation methodologies [? ]. Then, the equiva-
lence between a Question Answering system and a recommender
is made – in a user basis – by considering each recommendation
algorithm as a different system that will answer (or not) to the ques-
tions available, represented as the candidate items to be ranked by
a specific methodology. We instantiate four versions of this metric,
two of them based on users and two for items:

User Correctness(u, r ,N ) =
1
N

(
TP (u) +TP (u)

NR (u)

N

)
(4)

Recall User Correctness(u, r ,N ) =
1
N

(
TP (u) +

TP (u)

|T (u) |
NR (u)

)
(5)

Item Correctness(i, r ,N ) =
1
|U |

(
TP (i ) +

TP (i )

|U |
NR (i )

)
(6)

Recall Item Correctness(i, r ,N ) =
1
|U |

(
TP (i ) +

TP (i )

|T (i ) |
NR (i )

)
(7)

where N is the amount of items requested to the recommender r ,
TP (u) denotes the relevant items recommended to the user, FP (u)
the not relevant items being recommended, which combined gives
|T (u) | = TP (u) + FP (u); finally, NR (u) = N − (TP (u) + FP (u))
denotes the number of unanswered recommendations. The analo-
gous quantities could be defined for the item-based version of the
metrics.

4 EXPERIMENTS AND RESULTS
4.1 Experimental Settings
In this paper we have used three datasets from two different do-
mains: two versions of the MovieLens (ML)1 (ML-100K and ML-1M)
dataset and Jester2. ML-100K includes 100, 000 ratings by 943 users
on 1, 681 items (movies), ML-1M contains 1, 000, 209 ratings by
6, 040 users on 3, 883 movies, and Jester includes 1, 710, 677 ratings
on 150 items (jokes) by 59, 132 users. The rating scale on the first
two datasets is [1, 5], and on Jester is [−10, 10] (that we moved into
[0, 20] to avoid negative ratings).

Some of the algorithms used in the experiments are based on
implementations found in RankSys [? ], specifically, the nearest-
neighbour algorithms and their modifications. The probabilistic
matrix factorisation method was implemented by ourselves.

Finally, regarding the evaluation, two publicly available frame-
works were used: RankSys and RiVal [? ]. On top of the latter frame-
work we implemented the following evaluation metrics: User Space
Coverage representing the ratio of users that have received at least
one (USC) or N (USC@N ) items as recommendations, Item Space
Coverage representing the ratio of items that were recommended to
any user by a system returning at most N items (ISC@N ), and the
Correctness metrics as defined in Section 3.3:UC@N (User Correct-
ness), RUC@N (Recall User Correctness), IC@N (Item Correctness)
and RIC@N (Recall Item Correctness). The RankSys framework
was used to obtain novelty and diversity metrics, specifically EPC
and AggrDiv [? ].

4.2 Performance of decision-aware strategies
In this section we evaluate the performance of the different decision-
aware strategies presented in Section 2 using the evaluation metrics
described in Section 3. When we apply the strategy based on predic-
tion support, the change in coverage is not significant, even though
1Availlable at https://grouplens.org/datasets/movielens/
2Available at http://eigentaste.berkeley.edu/dataset/

the performance increases slightly; hence, there is no balance to
solve, and the algorithm with the highest precision is the clear win-
ner – see in Table 1 the results for ML-100K. User coverage remains
almost unchanged until n ≥ 7, although precision increases even
for smaller values of n until n = 7. Considering this information,
the three versions of the harmonic mean, G, and G2,1 all agree on
the ranking of the systems, where the best algorithms are those
with n equals 5, 6, and 4, in that order. We observe that UC and
RUC do not discriminate much more than that, however, when IC
and RIC are analysed, the best recommenders are not the same as
before (n = 4, 5) which makes sense because these techniques take
the item coverage into account, which decreases more abruptly
than the user coverage. Similarly, G1,2 also changes the ranking of
systems because it gives a higher weight to coverage than precision.
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Figure 1: Novelty and diversity metrics at cutoff 10 for a
decision-aware strategy based on prediction support. Jester
is plotted in the secondary (right) axis.

Figure 1 shows the impact that a decision-aware strategy based
on prediction support has on novelty and diversity. We observe
that, for larger n, both the diversity and novelty of the lists decrease
(which means that the recommended items are more and more pop-
ular), except for the Jester dataset. The rationale behind these results
is that, when the constraint n becomes more strict, more users are
required to have seen (rated) those items, which, in the long term,
produces that more popular items are being recommended. This
behaviour is consistent for the three analysed datasets.

Now we analyse the decision-aware strategy based on prediction
uncertainty. As we show in Table 2, this strategy evidences a strong
tradeoff between coverage and precision, since introducing a thresh-
old of 0.82 increases the performance by a factor of 4 but reduces
the coverage a 70% with respect to no threshold. This situation is
very interesting, because the optimal recommender depends on the
evaluation metric: for instance, στ = 0.84 obtains the highest value
for F1 and G2,1 but not in the other metrics, this is because they
are too sensitive to the precision value, since that recommender
achieves the second best value. This example evidences the dif-
ferences between the proposed correctness metrics and the other
combination metrics: whereas the latter simply combine two values,
the former include further assumptions that, in principle, helps to
interpret the comparison between recommenders. Following the
previous example, στ = 0.84 is preferred over στ = 0.86 by F1,
but UC inverts this relation; we can infer that στ = 0.86 is better
suited for deciding when an item should be recommended, since
we are rewarding unanswered recommendations above incorrect
recommendations.

Finally, Figure 2 compares novelty and diversity evolution for
different thresholds using a decision-aware strategy based on pre-
diction uncertainty. We observe the same result as in the previous
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Table 1: Comparison of performance metrics at cutoff 10 when using a decision-aware strategy based on prediction support,
for a nearest-neighbour recommender with k = 10 on ML-100K.

n P USC ISC F1 F2 F0.5 G1,1 G1,2 G2,1 UC RUC IC RIC

1 0.037 100.0 62.1 0.070 0.159 0.045 0.191 0.332 0.110 0.037 0.037 0.000 0.015
2 0.133 100.0 46.9 0.234 0.433 0.160 0.364 0.510 0.260 0.133 0.133 0.002 0.021
3 0.188 100.0 39.5 0.317 0.537 0.225 0.434 0.573 0.329 0.189 0.189 0.002 0.026
4 0.230 100.0 35.1 0.374 0.599 0.272 0.480 0.613 0.376 0.234 0.236 0.003 0.029
5 0.245 99.7 32.3 0.393 0.618 0.288 0.494 0.624 0.391 0.259 0.266 0.003 0.029
6 0.241 96.4 28.5 0.386 0.603 0.284 0.482 0.607 0.383 0.257 0.263 0.003 0.026
7 0.237 85.9 24.8 0.371 0.563 0.277 0.451 0.559 0.364 0.231 0.231 0.002 0.023
8 0.226 66.9 21.7 0.338 0.480 0.260 0.389 0.466 0.324 0.180 0.171 0.002 0.018

Table 2: Comparison of performancemetrics at cutoff 10when using a decision-aware strategy based on prediction uncertainty,
for a probabilistic matrix factorisation algorithm on ML-100K.

στ P USC ISC F1 F2 F0.5 G1,1 G1,2 G2,1 UC RUC IC RIC

− 0.093 100.0 22.7 0.170 0.338 0.113 0.304 0.453 0.205 0.093 0.093 0.001 0.009
0.82 0.326 28.2 9.1 0.303 0.290 0.316 0.303 0.296 0.311 0.100 0.094 0.001 0.006
0.84 0.283 59.0 15.1 0.382 0.484 0.316 0.408 0.462 0.361 0.174 0.170 0.002 0.011
0.86 0.214 80.9 19.6 0.338 0.520 0.251 0.416 0.519 0.333 0.177 0.176 0.002 0.012
0.88 0.181 95.6 22.2 0.304 0.514 0.216 0.415 0.548 0.315 0.176 0.176 0.002 0.013
0.90 0.165 99.5 24.8 0.283 0.495 0.198 0.405 0.546 0.300 0.165 0.165 0.002 0.013
0.92 0.156 100.0 26.0 0.269 0.480 0.187 0.395 0.538 0.289 0.156 0.156 0.002 0.012
0.94 0.145 100.0 27.3 0.254 0.459 0.175 0.381 0.526 0.276 0.145 0.145 0.002 0.011
0.96 0.139 100.0 28.2 0.245 0.447 0.168 0.373 0.518 0.269 0.139 0.139 0.002 0.011
0.98 0.133 100.0 28.6 0.235 0.435 0.161 0.365 0.511 0.261 0.133 0.133 0.002 0.011

strategy (Figure 1): when the constraints are more strict (στ de-
creases) both novelty and diversity decrease in the three tested
datasets. In this case the rationale is slightly different to what hap-
pened before: those items with a lower standard deviation seem
to correspond with popular items (like before), however, this con-
straint really imposes a limit on the number of different items that
can be recommended, which ends up producing very low diversity
scores.

5 CONCLUSIONS AND FUTUREWORK
In this work we have studied how to increase the user confidence on
the system by making the system aware of the decisions taken. For
this, we have proposed two strategies to decide if an item should
be included in a recommendation list of a specific user, based on
the consistency and reliability of the data that will be used by the
recommender system to estimate the preferences. These strategies
(one based on the support of the prediction and another on its
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Figure 2: Novelty and diversity metrics at cutoff 10 for
a decision-aware strategy based on prediction uncertainty.
Jester is plotted in the secondary (right and upper) axis.

uncertainty) have been evaluated in terms of precision, coverage,
novelty, and diversity. We have shown that a balance between
these evaluation dimensions – especially between precision and
coverage – is critical, and different metrics have been studied to
draw conclusions from them.

As a first step towards improving the understanding of this trade-
off, we have proposed a family of metrics (correctness) based on
the assumption that it is better to avoid a recommendation rather
than providing a bad recommendation. However, further analy-
sis is needed in the future, especially to find an objective way to
discriminate between these systems and decide which of these
metrics correlates better with the user satisfaction. We also aim
at extending the correctness family of metrics so that other evalu-
ation dimensions could be combined under the same framework:
diversity, novelty, or even other accuracy metrics like nDCG. Addi-
tionally, the psychological aspect of the recommendations should
also be considered, since if a user expects to receive N recommen-
dations, she may decrease her confidence in the system if less than
N recommendations are presented. Moreover, we aim at validat-
ing these results in an online setting with real users, in particular,
how users value incorrect recommendations in comparison with
unanswered/missing recommendations.
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