Enhancing Structural Diversity in Social Networks by Recommending Weak Ties

Motivation

- **Beyond accuracy**
 - Novelty & diversity
 - Many notions from social network analysis
 - Structural diversity → weak ties

Structural diversity

- **Community edge Cini complement (CEGC)**
 - Consider redundancy between weak ties
 - Analysis of links existing communities
 - Low CEGC → Skewed distribution → Low diversity

- **Local redundancy**: Transitive closure
 - Triadic closure: smallest unit of structural redundancy
 - Clustering coefficient complement (CECC)

Effect on information diffusion

- **Hypothesis**
 - The more structurally diverse is the recommendation, the more diverse and novel (non-redundant) will be the information flow through the network

Experiment description

- **Start with a well-behaved baseline** → Implicit MF (most accurate method)
- **Berkank baseline** to enhance a structural metric of the network
- **Simulate the flow of information through the extended network**
- **Analyze properties of diffusion (speed, novelty & diversity)**

Data

- Same networks as the ones used for the recommendation experiments
- **Information to propagate**: Tweets
 - originally published after the temporal split
 - containing hashtags which appear in at least 10 different tweets (avoid noise)

Protocol

- Information is propagated to all followers
- **User** retweets a tweet only if she retweeted it in real life → deterministic

Metrics enhancement

- **Enhance a global property μ of the network**
- **Berkank baseline recommendation by greedy maximization of objective function**

\[\phi(f, i, j, \mu) = (1 - \lambda) \sum_{(v, \mu_i)} f(v, \mu_i) + \mu \phi(i, j) \]

Algorithm: Global greedy reranking

1. **Input**
 - \(E \) \& \(G \) \& \(\phi(i, j) \)'s
2. **Output**
 - \(\phi_{opt}(E, G, \phi(i, j), \mu) \)
3. **Algorithm**
 - **Initialize**
 - \(\phi = \phi_{opt}(E, G, \phi(i, j), \mu) \)
 - **Iterate**
 - Until no more improving recommendation
 - **For each**
 - \(i \) in \(G \)
 - **Do**
 - **Initialize**
 - \(\phi' = \phi_{opt}(E, G, \phi(i, j), \mu) \)
 - **For each**
 - \(j \) in \(G \)
 - **Do**
 - **If**
 - \(\phi(f(i, j)) > \phi(f(i, k)) \)
 - **Then**
 - \(\phi = \phi' \)
 - **Return**

Recommendation experiments

- **How do state of the art algorithms perform in terms of structural diversity?**

<table>
<thead>
<tr>
<th>Recommendation algorithms</th>
<th>Original</th>
<th>(\phi(E))</th>
<th>(\phi(G))</th>
<th>(\phi(E, G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit MF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalized SALSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive-Adapted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skewed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaccard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popularity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centralized CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baselines: random, popularity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information diffusion properties

- **Notation**
 - \(I_C \) Set of all hashtags
 - \(t \) a tweet defined as a subset of \(I_C \)
 - \(a_t \) at time \(t \)
 - Has received the tweets \(t \) containing the hashtags \(N_{t}(t) \)
 - \(|N_{t}(t)| \)

- **Speed**
 - Most analyzed network efficiency feature in diffusion processes
 - How many tweets are propagated and received?

- **Novelty and diversity**
 - Measured in terms of hashtags
 - **Novelty**
 - How novel is the information received by users?
 - Internal ranking factor (IRF)
 - **Diversity**
 - Are hashtags evenly distributed over the population?
 - Potential to incentivize Ellen hubs
 - Ranking time complement (RSC)

- **Recommendation results**
 - IECG provides the best trade-off between accuracy, structural properties and information diversity
 - Recommending weak ties improves the novelty of the information received by the different users