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ABSTRACT 
We revisit the Probability Ranking Principle in the context of rec-
ommender systems. We find a key difference in the retrieval pro-
tocol with respect to query-based search, that leads to the identi-
fication of different optimal ranking principles for discovery-ori-
ented recommendation. Based on this finding, we revise the effec-
tiveness of common non-personalized ranking functions in re-
spect to the new principles. We run an experiment confirming and 
illustrating our theoretical analysis, and providing further obser-
vations and hints for reflection and future research. 
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1 INTRODUCTION 
Robertson [8] put forward and discussed the Probability Ranking 
Principle (PRP) stating that under certain assumptions, the opti-
mal ranking for a given information need is by decreasing proba-
bility of relevance of the documents to the information need. Rob-
ertson described and analyzed cases where the PRP may fail, and 
potential restatements of the principle in view of such limitations. 
A profuse line of research followed up extending or reexamining 
the PRP, seeking better, more complete, or more generalized prin-
ciples [11], or aiming to fit the particularities of specific IR scenar-
ios (such as interactive retrieval [6] or multimedia retrieval [10], 
to name a few). The PRP remains nonetheless a prominent notion 
today at the foundation of IR theory. 

In this paper we analyze the recommendation task [1,5] as a 
new use case in the spirit of this long strand of research, seeking 
and analyzing the definition of an optimal ranking, through a for-
mal methodological approach. A particularity of recommendation 
compared to the search task is that item relevance is understood to 
be a fully personal and subjective matter, solely defined by each 
end-user’s personal taste, whereas judging the relevance of a 
search result has a (non-null but) narrower scope for disagreement, 
limited by a specific information need and its explicit expression as 
a query. Yet the PRP analysis in the context of search [8] has simi-
larly considered degrees of user-level subjectivity or disagreement 
(in particular, as a challenge to the PRP), whereby our present re-
search can be connected to such prior work in more than one way.  

An additional singularity in the recommendation task is that, in 
its most widespread statement, the system should avoid recom-
mending items the target user has already been observed interacting 
with. This restriction applies in scenarios where the added-value of 
recommendation is tightly linked to a purpose of discovery, as a 
complement of what users can already have experienced by them-
selves, and the assistance that other information retrieval technolo-
gies such as search engines already provide. In terms of an evalua-
tion experiment, the condition means that items with an observed 
interaction record for the target user should be excluded from the 
ranking delivered to this user. This restriction substantially changes 
the frame for the optimal ranking analysis, as we shall see.  

2 BASIC CONCEPTS AND NOTATION 
The recommendation task considers a set of users 𝒰, a set of items 
ℐ, and a set of observed interaction records between users and items 
that can be interpreted as evidence of the user liking or disliking the 
item (i.e. relevance or non-relevance). As a widespread simplifica-
tion, we may assume interaction data consist of a binary value 
𝑟: Ω ⊂ 𝒰 × ℐ → {0,1} so that 𝑟(𝑢, 𝑖) = 1 if the user 𝑢 ∈ 𝒰 likes the 
item 𝑖 ∈ ℐ, and 𝑟(𝑢, 𝑖) = 0 otherwise. Following common terminol-
ogy, we shall refer to 𝑟(𝑢, 𝑖) as a rating. Ratings are available only 
for a subset Ω (typically a tiny fraction) of all user-item pairs 𝒰 × ℐ 
–there would otherwise not be any recommendation task to solve.  

Taking the available rating data as input, the task of a recom-
mender system is to compute a score for all user-item pairs where 
a rating is missing, and thus generate a ranking of unrated items to 
be delivered to each user in the system. The system output is eval-
uated using further user ratings on the recommended items, to be 
collected somehow, taken as relevance judgments. Such judgments 
can be obtained in different ways, depending on the evaluation set-
ting. For instance, in offline evaluation, judgments are sampled (as 
so-called test data) from the available rating dataset itself, hiding 
them from the recommender system to be evaluated, while the re-
maining ratings are supplied as input training data to the system. 
In our theoretical analysis we will to some extent abstract our-
selves from the problem of obtaining judgments, and assume we 
will manage somehow to get the relevance information we need.  

For convenience in our formal analysis, we shall introduce two bi-
nary random variables 𝑟𝑎𝑡𝑒𝑑: 𝒰 × ℐ → {0,1} and 𝑟𝑒𝑙: 𝒰 × ℐ → {0,1}, 
where 𝑟𝑎𝑡𝑒𝑑 = 1 iff a rating (be it positive or negative) by the user 
for the item is present in the input data, and 𝑟𝑒𝑙 = 1 iff the user likes 
the item, regardless of whether this is known to the system (by the 
presence of a rating) or not. With this notation we can express well-
defined distributions, e.g. 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) is the ratio of users who have 
rated item 𝑖, and 𝑝(𝑟𝑒𝑙|𝑖) is the fraction of users who like the item.  

3 EXPECTED AND OPTIMAL PRECISION 
Whereas Robertson [8] considered a variety of evaluation metrics 
and cutoffs in his analysis, we shall focus here on 𝑃@1 as a sim-
plest metric to make our analysis more tractable. Given a recom-

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than 
the authors must be honored. Abstracting with credit is permitted. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Permissions@acm.org. 
SIGIR '18, July 8–12, 2018, Ann Arbor, MI, USA. 
© 2018 Copyright is held by the authors. Publication rights licensed to ACM. 
ACM 978-1-4503-5657-2/18/07…$15.00 https://doi.org/10.1145/3209978.3210076 



  
 

 

 

mendation for a user, 𝑃@1 is equal to 1 if the target user likes the 
top ranked item, and 0 if she does not. The expectation of 𝑃@1 for 
a given recommendation 𝑅 is hence 𝔼[𝑃@1|𝑅] = 𝑝(𝑃@1 = 1|𝑅).  

Now we need to be more precise with the computation of the 
metric: 𝑃@1 = 1 if the first ranked recommendable item in 𝑅  is 
relevant. Let this item be 𝑖𝑘, ranked in the 𝑘-th position of 𝑅. As 
stated in the introduction, recommendable means that 𝑖𝑘 does not 
have a rating by the target user, and being the first means that all 
the items 𝑖1 , 𝑖2,…, 𝑖𝑘−1 above 𝑖𝑘  in 𝑅 are not recommendable be-
cause they do have a rating. If we marginalize 𝑝(𝑃@1 = 1|𝑅) by 
the possibility that the 𝑘-th item is the first recommendable, and 
we make the mild assumption that whether two items are rated or 
not by some user are mutually independent events, we have: 

𝔼[𝑃@1|𝑅] ∼ ∑ 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑖𝑘) ∏ 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖𝑗)

𝑘−1

𝑗=1

|ℐ|

𝑘=1

 (1) 

We should note how this equation contrasts with not consider-
ing item exclusion, in which case we would simply have 𝔼[𝑃@1| 
𝑅] ∼ 𝑝(𝑟𝑒𝑙|𝑖1) and 𝔼[𝑃@𝑛|𝑅] ∼ ∑ 𝑝(𝑟𝑒𝑙|𝑖𝑘)𝑛

𝑘=1  as in [7], and the 
PRP analysis would be similarly applicable here. The exclusion of 
rated items can thus make a difference in the metric and, poten-
tially, in the outcome of a comparative evaluation of algorithms. 

3.1 Discovery False Negative Principle 
We can now set forth the following result on the optimal non-
personalized ranking for expected precision. 
Lemma. Assuming pairwise item rating independence, the opti-
mal recommendation that maximizes the expected 𝑃@1  ranks 
items 𝑖 ∈ ℐ by non-increasing value of 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖). 
Proof. It suffices to show that a swap against 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) in 
a ranking produces a smaller value for the expected 𝑃@1. Given 
that any ranking can be generated by a sequence of pairwise 
swaps on any other ranking (as per e.g. the proof of correction of 
bubble sort), we would have proven our point. 

Let 𝑅 = 〈𝑖1, … , 𝑖𝑛〉 be some ranking so that 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖𝑘) 
≥ 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖𝑘+1) for some 𝑘, and let us consider a ranking 𝑅′ 
consisting of swapping 𝑖𝑘 and 𝑖𝑘+1 in 𝑅. Using equation 1 it is easy 
to see that, by trivial algebraic cancellation and rearrangement of 
terms, we have: 

𝔼[𝑃@1|𝑅] ≥ 𝔼[𝑃@1|𝑅′] ⇔
𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑖𝑘)

1 − 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖𝑘)
≥

𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑖𝑘+1)

1 − 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖𝑘+1)
 

⇔ 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖𝑘) ≥ 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖𝑘+1) 

Which is true by description of 𝑅. Hence, swapping 𝑖𝑘  and 𝑖𝑘+1 
decreases 𝔼[𝑃@1|𝑅].  

We thus get a variation of the PRP, stating we should rank 
items by decreasing value of 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) rather than 𝑝(𝑟𝑒𝑙|𝑖). 
The probability 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖)  corresponds to the fraction of 
unobserved (unrated) user tastes that are positive, that is, the ratio 
of positive missing ratings. This means that the best items to be 
recommended are not exactly the ones that please most people, 
but the ones for which most unobserved preferences by the sys-
tem (or undiscovered by users themselves) are positive. If we look 
at preference discovery as a retrieval process (prior to recommen-
dation) in its own, 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) represents the false negative 
ratio of this process. We may thus refer to this finding as the Dis-
covery False Negative Principle (DFNP). 

This principle makes natural sense in the recommendation 
context. An item that many people like (pure probability of rele-
vance), but that most people have already interacted with, is of 

little use for recommendation, as it will be excluded from the rank-
ings delivered to their potential “likers”, and will be recommended 
to people who have not yet interacted with the item, but who may 
possibly not like it. Items with a high positive ratio in their miss-
ing ratings, in contrast, have a safe unexploited potential market 
–be it small or large– to make profit from. 

Ratings come to be by users becoming aware of the existence 
of an item in the first place (by searching, browsing, advertise-
ment, advice from a friend, random chance, etc.) and, second, by 
the system witnessing the encounter between the user and the 
item. Thus recommendation should favor items for which prior 
discovery has most failed, which to much extent describes the rai-
son d’être of recommendation: complementing and filling the gaps 
left by other means for discovery and retrieval. 

Note that we have not introduced an explicit user variable in 
any of the equations so far. This does not mean however the scope 
of our findings is restricted to non-personalized recommendation. 
Quite the contrary, the user variable can be assumed to be implicit 
in all the statements, e.g. the optimal ranking for a specific target 
user 𝑢 ∈ 𝒰 is by decreasing value of 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖, 𝑢). But since 
the user variable was not needed in our developments, it can also 
be explicitly excluded from their interpretation, and we can apply 
our findings in a non-personalized scope as well. 

3.2 Low Discovery Recall Principle 
Relevant recommendations are useful, but it is well understood in 
the field that relevant and novel ones are definitely more useful, 
and typically the whole purpose of recommendation [4]. Exclud-
ing rated items is a trivial realization of this principle, but unrated 
recommended items might still be unsurprising for the user. With 
this perspective in mind, we may consider accuracy metric vari-
ants that take novelty into account by simply counting as relevant 
only the items that the target user had not seen before.  

We may for this purpose introduce an additional binary ran-
dom variable 𝑠𝑒𝑒𝑛: 𝒰 × ℐ → {0,1} to our analysis, and consider an 
“undiscovered precision” metric 𝑈𝑃 such that 𝑈𝑃@1 = 1 if 𝑟𝑒𝑙 ∧

¬𝑠𝑒𝑒𝑛 = 1 for the first recommendable item in the ranking. Any 
other relevance-oriented metric can be adapted in just the same 
way. Many metrics for measuring novelty have been proposed in 
the field [4], but this one is just direct. It is not possible to compute 
it with common available public datasets, but we will show an ex-
periment where we arrange for doing so. 

Now by similar steps as we followed for 𝑃@1, it is easy to see 
that the optimal ranking for 𝑈𝑃@1 is by 𝑝(𝑟𝑒𝑙, ¬𝑠𝑒𝑒𝑛|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) 
= 𝑝(¬𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖)𝑝(𝑟𝑒𝑙|𝑖) 𝑝(¬𝑟𝑎𝑡𝑒𝑑|𝑖)⁄ ,  given that ¬𝑠𝑒𝑒𝑛 ⇒

¬𝑟𝑎𝑡𝑒𝑑. We get a new, even more explicit principle here: along 
with a high probability of relevance, items with a low prior dis-
covery recall 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖) are most desirable –we may refer to 
this as the Low prior Discovery Recall Principle (LDRP).  

4 NON-PERSONALIZED RECOMMENDATION 
Considering the principle that drives the best possible recommen-
dation, we may wonder if we could use it to the benefit of designing 
the best possible recommendation algorithms, namely by seeking 
some approximation to 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) and 𝑝(𝑟𝑒𝑙, ¬𝑠𝑒𝑒𝑛|¬𝑟𝑎𝑡𝑒𝑑, 
𝑖). A proper estimation of these probabilities requires some rele-
vance knowledge, of which a recommender system is only supplied 
a sample, namely, the relevance that is observed by ratings. Unfor-
tunately using this sample is incompatible with the estimation of a 
probability that negates the presence of ratings as a condition.  



 

We can however consider combinations of probabilities that 
may partially match the optimal ranking functions, taking ratings 
as an observed sample of the relevance and discovery data, in the 
hope that such functions may produce rankings that are, in prac-
tice, not that far from the optimal. As a simplification, we explore 
here non-personalized rankings, keeping the user variable away 
from the probabilities. Three meaningful and common non-person-
alized rankings can be defined in terms of ratings and relevance: 

𝑝𝑜𝑝(𝑖) = 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) 
𝑟𝑝𝑜𝑝(𝑖) = 𝑝(𝑟𝑎𝑡𝑒𝑑, 𝑟𝑒𝑙|𝑖) 
𝑎𝑣𝑔(𝑖) = 𝑝(𝑟𝑒𝑙|𝑟𝑎𝑡𝑒𝑑, i) 

The first function ranks items by their total number of ratings, 
commonly known as popularity in the literature [5], which is in-
creasingly often included as a sanity check baseline in recommender 
systems experiments. The second function 𝑟𝑝𝑜𝑝 is similar but only 
counts positive ratings [9]. Finally, 𝑎𝑣𝑔 is the ratio of users who 
have expressed a positive preference for the item, which can be read 
as the average rating when ratings are binary, and has been seen to 
perform below popularity in terms of ranking quality [5]. We ex-
plore in the next section how these non-personalized recommenda-
tions perform in relation to the optimal ranking, and to each other.  

5 EXPERIMENT 
To match the implicit assumptions of our theoretical analysis, we 
take a crowdsourced dataset that provides the opportunity to get 
ratings in the way users might produce through spontaneous ac-
tivity, but at the same time includes further relevance and discov-
ery knowledge that would not be obtained in the natural process. 

5.1 Dataset 
The dataset1 was built using the CrowdFlower2 platform, and in-
cludes preference judgments entered by 1,000 people for 1,000 music 
tracks randomly sampled from the Deezer database.3 A judgment 
declares whether or not the user likes the music, after listening to a 
short clip of the track. Each user is assigned 100 tracks, sampled uni-
formly at random, in such a way that each track gets about 100 judg-
ments, amounting to a total of around 100,000 judgments in the da-
taset. In addition to her taste, the user is asked whether or not she 
knew the music before this survey. Fig. 1a shows the user interface 
where the CrowdFlower workers enter their input for a music track, 
and Fig. 1b shows the resulting distributions of the total number of 
judgments, positive judgments, and prior awareness for each item.  

Now we use this offline dataset to reproduce an online recom-
mendation scenario as follows. The judgments for music that users 
declare having already heard before can be taken to reasonably rep-
resent ratings that users might have entered spontaneously in a sys-
tem, had they come to find such items within such a system. These 
judgments therefore make up a reasonable representation of the in-
put data that a recommender system is commonly supplied with. 
And the remaining judgments, for music that users had never heard 
before the survey, can be used as relevance judgments for evalua-
tion –they apply to unrated items, the ones that are recommendable 
for each user. This relevance knowledge is not complete: our crowd-
sourced survey only covers about 10% of all items for each user. But 
since the user-item pairs are sampled uniformly at random, the judg-
ments provide an unbiased estimate of the full relevance information. 

                                                                 
1 The dataset is available at http://ir.ii.uam.es/cm100k. 
2 http://crowdflower.com. 

5.2 Standard Accuracy 
To represent the design of an offline experiment, we randomly split 
the rating data into training and test subsets, with a ratio 𝜌 ∈ (0,1] 
of training data. The recommendation algorithms are only supplied 
with the training ratings, and the test data are put together with 
the unrated item judgments to form the set of relevance judgments 
for evaluation. Note that the higher the training ratio 𝜌, the more 
items shall be discarded from recommendations (because of having 
training ratings for more users). Thus 𝜌 sets the transition from an 
offline setting with different split ratios, to an online setting exper-
iment at 𝜌 = 1 where no available input is spared for evaluation. 
We use this to test and observe how the experiment results may 
change through this transition, and see in particular how the out-
come of online vs. offline experiments may agree or differ.  

Fig. 2 shows the results for 𝜌 ranging from 0.1 to 1, averaged 
over 100 random split repetitions for each 𝜌 to reduce variance. 
For the average rating we use Dirichlet smoothing with 𝜇 = 1 in 
the probability estimation, as it is highly sensitive to the large var-
iance of the average value in the items with fewest ratings. Along-
side the non-personalized recommendations, we evaluate the PRP 
and DFNP as oracle rankings that are given access to all the avail-
able relevance information. We see that for low values of 𝜌, the 
PRP and DFNP are not far from each other. However, for higher 
values of 𝜌 the disagreement grows considerably due to the in-
creasing effect of item exclusion, reaching a quite extreme point 
at 𝜌 = 1. We see that the PRP completely fails to represent an op-
timal ranking at 𝜌 = 1, to the point of being even substantially 
worse than a random recommendation. In contrast, the DFNP 
seems quite robust to the split ratio. A general decrease in precision 
with the split ratio for DFNP is natural since increasing 𝜌 means 
preserving less positive relevance judgments for evaluation. 

The non-personalized recommenders seem to be effective for 
low values of 𝜌, but are increasingly ineffective for higher split ra-
tios. Popularity-based recommendation seems to follow the PRP ra-
ther than the DFNP ranking, with positive popularity 𝑟𝑝𝑜𝑝  per-
forming slightly better than total popularity 𝑝𝑜𝑝. In contrast, rec-

3 http://deezer.com. 

 a) Music judgment questionnaire b) Crowdsourced data distribution 

 
Figure 1: Music track judgment questionnaire (left) and 
data distribution in the obtained dataset (right). We take 
the top two answers to the first question in the judgment 
form (“how do you like this song”) as indicating relevance, 
and the next three as non-relevance. The questionnaire 
does not show the song title or artist in order to get as much 
spontaneous and unbiased answers from users as possible. 
In the data distribution graph (right), the 𝒙 axis for each 
curve is sorted by decreasing value of the 𝒚 coordinate. 
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ommendation by the average rating seems to be more robust and 
consistent than the popularity rankings to variations in the split ra-
tio, and possibly a better approximation to the DFNP. It is the only 
ranking that stands above random recommendation for 𝜌 = 1.  

The poor outcome for PRP as 𝜌 → 1, and the rankings that seem 
to follow it, is due to the fact that the top few music tracks that most 
people like in the survey (“I will survive” by Gloria Gaynor, Bee-
thoven’s “Fur Elise”, Mozart’s “Rondo alla Turca”) are known to 
almost everyone who was asked to judge them. As a consequence, 
the few users for whom the items are not excluded are mainly those 
who were not asked to judge them. Since we take the absence of 
judgment as non-relevance, this badly hurts the performance of the 
PRP. This may be to some extent unfair, as these items might actu-
ally please some users for whom we have no judgment. However, 
these users might in fact already know the items if they were asked, 
and again, the items would be excluded. Further research would be 
needed to try to elucidate what is the true situation. Be that as it 
may, it becomes clear that the PRP is vulnerable to the overlap be-
tween relevance and rating, and can largely diverge from an opti-
mal ranking when these two variables strongly correlate. 

5.3 Undiscovered Accuracy 
Finally, we seek further insights in terms of undiscovered relevance 
as described in section 3.2. To be able to compute such metrics, we 
apply a 5-fold random split of all user judgments, taking 4/5 as 
training, of which only the judgments with 𝑠𝑒𝑒𝑛 = 1 are supplied 
as recommendation input; and holding out 1/5 of all judgments (in-
cluding relevance and discovery information) as test data for met-
ric computation. This makes it possible to compute regular and un-
discovered versions of any accuracy metric. Fig. 3 shows the results 
for nDCG@10 (other metrics show a similar trend). We can see that 
all rankings do a terrible job at discovering useful (relevant and 
novel) items, except for the average rating, the only non-personal-
ized recommendation standing above random recommendation. 
Note that in this setup, the undiscovered relevance in the training 
set is not used in the metrics computation, hence the drop of DFNP, 
average rating, and random ranking in standard accuracy with re-
spect to Fig. 2, while popular items are least affected by the dropped 
judgments, as they had little undiscovered relevance to dispose of. 

6 CONCLUSIONS 
We have found that the common recommender system task, 
where items should not be recommended to users who have al-
ready discovered them, motivates a revision of the Probability 
Ranking Principle [8]. Our analysis finds simple principles for the 
optimal ranking in this context. We empirically confirm the diver-
gence between these principles and the PRP in a small experiment, 

where the former show a more consistent behavior over variations 
in the experimental setting for recommender system evaluation. 
We further find that the average rating seems to display better 
properties than other non-personalized ranking criteria, both in 
terms of approximating the optimal ranking for accuracy and, yet 
more clearly, in delivering novel relevance. 

Recent research in the field has shown that most collaborative 
filtering algorithms are biased towards recommending popular 
items [2,7]. More recently, certain algorithms have been found to be 
biased to the average rating instead [3], and such algorithms appar-
ently show worse results in common experiments on public da-
tasets. Interestingly, our present exploration raises the question 
whether the average rating might be a better signal than the number 
of ratings under certain experimental conditions, incidentally the 
ones that may more closely represent a live setting and true utility. 
This may call for a second look at the outcomes of offline experi-
ments, under the light of further angles in the experimental design, 
involving e.g. the relevance judgment collection procedure, or re-
producing the conditions of an online setting. Extending our analy-
sis to personalized algorithms will likely involve the construction of 
larger and more dense datasets, which we envisage as future work. 
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Figure 3: Standard vs. undiscovered accuracy. All pairwise 
differences are statistically significant (2-tailed Student’s t 
test 𝒑 < 𝟎. 𝟎𝟓) except DFNP vs. PRP and 𝒓𝒑𝒐𝒑  in standard 
nDCG (left), and PRP vs. 𝒓𝒑𝒐𝒑 in undiscovered nDCG (right). 
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Figure 2: Experiment results. The curves show the evolution 
of the recommendations accuracy for different rating data 
split ratios by steps of 0.1.  
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