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ABSTRACT ple true-positive metrics include precision, recalinean reciprocal

Falpsoesi tive metrics can capt ur daMRR; oermalized disounted qyrpulatye gaiplCd.o mme n -
dation quality, focusing on theOu' sdsgrpfllrqueg@@@gggqnmg]qeg|tem§1trépg ar e
liked by umspdresnenas od common HEE fislikedthe false positives, This is not a common perspec-
measure the amount of Ilsmuctkhiss f}ﬁ%’ Pe&ﬂ,@&{s Besmpsasienafly; congidered and/or studied in the
we r es eeaxtcenn tt hteop avdii cihv é ameter i d&dL12 31741 ang is cogmoag in evaluation practice in sjfec
agree wpidshi ttirwee metrics in the PE&HESHAOMaNG WNe popsiderywhether fatpsilive gngrics
mender sydd@onsers Wepr i sisnygs tdemrp%p&re anything dn‘fergnt from trugpositive. We find notJ.ust dif-
di sagmtéreant o wvass in@nleld ynot ienx |hdBreqcegbut blatant disagreements, the causes of which we then
literature byWe mah izoxupsl faouddhi arng/nvestigate. We further consi(jer Whether the disagreements a
crepaertween tihmeheaheeterti cosf p o,p u | MARer of g complergeqtariyy in perspectives, or perhaps one type
whitmpdatl seramditivenmeteriycsd jof metricds jugt delivering more correct and reliable measurements
waysinstead of rewarding the rhRBeAM&ndati on of popul ar items,
as witphostintu@esi faveemetrics pe ne(findhaltheagreementbeiwpenliye and fagesitive met-
Wedet erpmiencéd se condibhhengenada t{l(g;gsgggtlﬂ I@|§F(?d Fo missing relance information, and the fact
wi ehrfroelx pl ahati oingrs whd ch we c ¢Rtths jpformafign is missing not at random (MNARYY 45,46,
illustrate empirically in expeln§effpstofsuch bjases iprecgmmendationalgoritms and affling ¢
evaluation has become the object of growing research in the field
CCS CONCEPTS [3.7.9,27.44,49]. In particular, algorithms and metrics have been
U nformati ®@nResysimemsd e Ul nsfyosrt nean $oundrto be biased to favor the recommendation of popular items,
systems @ Evaluation of retri ebeyardtheirebeatvetqsality, and progress has been made in man-
aging these effects. But how such biases may affect-faisgive
KEYWORDS ] ) “metrics has nbbeen studied or addressed, as far as we are aware.
Recommender evalysamamsmifaclss,e  posi t {y¥ gyfress these gstions through a theoretical analysis
popul arnarwabdam; mi ssing data. pagedomhe formalization of expected biased and unbiased metric
ACM Reference format: values, and the rankings that optimize them. We find fundamental
Eli sa-MMem@anaRoci o Cafiamares, Pabl differencesirthd manifestasiongf thhe birses with respect to prior
Mar k Sand2A@g@emement and Di sagarec mavork: sinwetvhaepetoxitally, éalsepositive metrics unfairly pe-
FalPwoesi tive Metrics in Recofmneintde r nafijeiHe te®dmntendatiot 8fpdpRIar items, just as tpositive

ﬁgnde% '\r/' 'm';tt N &);F‘g;%ogrg@h:z;;f a ’il g h Yaqr;rgk eD eNYQ'étHC%%HI%ﬁéh‘frI? tewatd'them. We also find an explanation for the
i 0i w g,e s 8 . L. )
h-pdoi N®rd/A45/3397271. 34010096 disagre hts between false and tp@sitive metrics in recom

mender systemamparisons, and we identify key elements to dis-
cern whether one of the two typeof metric may be more reliable
than the other, in terms of capturing the underlying truth beyond
the biases. We confirm and illustrate our analytical findings with
empiricalobservations over different publicly available dataskts.

ll ntroducti on

Matching what users like is a primary prerequisite for recommen-
dation to be successful: it is commonly referred to as the accuracy of
recommendation. Accuracy is generally measured as a function of
the number of recmmmended items that users liked: the true posi-

) ) . Background and Rel ated Wor
tives, which can be counted, cut off, weighted, averaged, etc. Exam 9

The practical goal of a recommender system is defined by the par-
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ades 101532). Amid many different (sometimes conflicting) objec-  tive and falsepositive metrics to the incompteness of relevance
tives, mathingtheendu s er 0s tastes can be koowlddge and useddhenats pr@gosp & dorneetionymethod for the
requirement for recommendation to make sense. This dimension is potential biases in poolingpased evaluation of search results.
broadly referred to as thaccuracyf recommendation. While true-positive metrics consistently display a high correla-
When assessing accuracy, different angles can be consideredtion between each other throughout reportedsearch, the afore-
The commonest appach focuses on the ability of a system to de- mentioned work systematically reports frequent contradictions be-
liver as many good recommendations to as many people as possi-tween truepositive and falsgositive metrics. While such disagree-
ble [23]. Perfect accuracy is usuallyexwed as an impossible goal ments were discussed in the corresponding work, a conclusive or
and users are expected to be tolerant of some error. If there are systematic explanation has not been désed, and is sought here.
useful choices in the mix, uninteresting recommendations will As we shall see, the discrepancies are caused by relevance
hopefully be ignored. For these reasons, recommender systemknowledge incompleteness, a particularly acute condition in of-
evaluation practice and research has lalsgfocused on counting fline recommender system evaluation. More specifically, the cause
(evidence of) true positivelgl2]. Some attention has been paid to lies in the fact that ratings argpically MNAR in common datasets

the flip side the (evidence of) false positivesZ17,41]. We too [30,45], where heavy popularity biases pervade the data, impacting
find it worthwhile pondering the potential negative effects that the algorithms and metrics that assess their accuracy. Important
disliked recommendations can have on the user experience. progress has been made in the last decade in confirming, measur-

. ing, explaining and copingvith such popularity biases?9,27,44,
2-_ :. e Co SaB.a & ® anane n .d ation 46,49]. While all this prior research has focused on trpesitive
Disliked recommended items have a negative effect on the user metrics, the question remains whether the results reached so far
experience. False positives are a clear concern in specific domainsyould similarly apply to falsepositive metrics. We address the

such as automatic music playlist generatifirb]. Here, users may  guestion here and,sawe will see, the answer differs considerably
commonly tolerate background music that is just nice, but they from the corresponding prior findings.

may be annoyed by an occasional unpleasant tra#cka conse-

quence the skip .rate is a common metric in m.usic gnd video 3 Fal-Besi ti vePositiTveeMetric
streaming [®]. Skip behaior is also a common signal in recent
challenges as a target for prediction, and/or as part of released data
for evaluation (e.g[5]). Some authorsdve likewise applied met-
rics of least norrelevant music to evaluate playlisf£9].

The skip rate has been similarly used in Web search to assess
the cost in reading and skipping effort of nerelevant result§48]. A £0 o &0
Dating online is also often mentioned as a domain where false pos- &ATD TE%T AT O EZGWO
itives involve a gnificant cost[37]. Information Retrieval (IR) )
metric frameworks have been likewise developed that consider the whgreTP andFp denote th? number of rglevant and naslevant
cost and benefit involved in deliving relevant and norrelevant retrieved (recommended) items respectively, ands the number

documentg53]. Beyond IR and recommender systems, false posi- of nonrglevant items that are not retur.n.ed. The measures can be
tives in classification are important iparticular domains, and respectively defined as Tec‘f"“ and prec_|S|on “S'T‘g*“e'*"ance n .
costaware machine learning theory and methods have been long place of releva_nce. If skipping a song N amusic stre_amlng session
developed]4,38]. From a wider perspective, scholars have studied IS take_n as a sign of nerelevance, thB.A | Qsttoe skip rate, i.e.
how a bad recommendation can hurt user tr{st]. Psychological the ratio of played songs that were Sk'ppsz’%]' .
studies have described a negativity bias in human perception, . Qne may expect that fglspsqsnwe metrics measure qunte‘a N
whereby bad impressions may sometimes outweigh good ones in similar th.”.]g totrueposi tive met .r | €S, Just :
our overall assessment of an experienc&1R, Fglseposmve_ <_:an be gxpecteq to strong@yega_tlve_ly) correlate

with true-positive metrics. For instance, for afgrecision this re-
2 Ral-Besiet Met rReccso mme n d at latignghip is direct and linear, a1 Qsilte exact arithmetic com-
The recommender systems literature is rich in accuracy evaluation Plement of precision:
methodologies 4,72342,46]. Most focus on true positives as the 0

We thus find motivation for the use of evaluation metrics that as-
sess bad recommendations, along with (or complementarily to)
metrics that assess good. Simple metrics involving false positives,
such as fallou{38] or anti-precision[29], can suitably meet this
purpose; they are defined as:

S A5, _ —— AT OE0 0
recommendation objective to be assessed. One notable exception 40 &0
to this is the use of ROGReceier Operating Characteristic) Figure 1 topleft illustrates thisrelationship inthe metric values
curves and the area undernea#2], which employ a falsgosi- of AT @FHO vsD@10 for a set of collaborative filtering algo-
tive metric 8fallout® in the daxis. Frolov andseledet§17] and rithms (detailedlater in Section 5.2) on MovieLens 1§81], a

Sanchez and Bellog{#1] explicitly considered false positives in ~ Widely used dataset example. The metrics in these graphs are
their definition -metdr iodssier vvah ii Gnsuesitaipigesfaled condensed rankings40,50, where
any common truepositive metric on flipped relevance judgments.  unrated (unjudged) items are excluded from the evaluated rank-

For instance, fallouf38] is the antimetric for recall, and the ratio ~ ings before computing the metrics. We can dee algorithms

of returned nonrelevant items(so-called antiprecision [T7,29, stand on a straights p @line, confirming thatA | @FL0

41)) is the antimetric for precision. Fallouhis also occasionally P 0@10Q In essencethey are the same metric. The relationship
re-ported among other evahtion metrics in some work [2,13). between fallout and recall is not exactly linear due to a different

In IR, Lipani et al[29] related the disagreement between trpesk denominator in the two metrics. We can see in Figure 1-figit



that they are still strongly negatively correlated. Since tpesi-

0.8 rRsg——7T=-1

tive and falsepositive metrics are inversely oriented (the lower z SVD+ n GPLS ci\slst / A LS

AT Odnd fallout the better), this negative correlation means o ltem‘ﬁ‘,’\ﬂ\%’ﬁa User kNt | g llem kNN O LR et KT

agreement on which of almost every pair of systems is best. c % 0.7 |WRMF "%%) PVO\IpBPF % ' WR“S"E,,\, Ooct.. Pop
Theseexampleobservations ar@btained however withan ex- g . SE',Z’MF o EAL! g 0 GBpP/ | o WEPF

perimental option (condensed rankings) that makesdevance c GBPF ' Rng 087 PNMF Rnd

knowledge artificially completén the ranking top. Cffline recom- 8 o5 BPMF’"%A___‘ 0ss BPMF>

mender system evaluatiois generallyconducted with highly in- 02 03 04 04 0.45 05

complete relevance knowledgand &en thoughcondensed rank- antiP@10 Fallout@10

ings have beemccasionallyusedin the literature[4,9,2349, they c 7=10.62 02 7=10.73
are notgenerallyconsidered théestoption: they result in massive © 0-25l sty GPLS o WRMF RSGI WRMF
losses in effect sizand statistical significangend adeviation from = 020 o Userknig g 0151 SL'(Z/PLS? ALt
the actualtaskthat the evaluatedsystemsare meanto solveéthe S R & Por EAL § ftemKNM 0o - °7 P2
systems need teank all the items in the dataset, and njotst the _? o1 SVDO f ltem Em" F § 0'1SVD+_°O @ Pop

judged onesln fact, condensed rankings just do not woik the > |2 o wee 005 16 2
common casevhen only positiveungradeduser feedbacks avail- Loy QRBFd’MF Avg, - BPMF

able for evaluationall systems would get the same metric score 0 6@ : oos o 0 0" Rn Py o
that caseFull rankings ishereforeby far the mostommon option antiP@10 Fallout@10

in recommender system evaluation nowad4gs142].

Figure 1 bottordeft illustrates what happens with this more
common experimental configuration. As can be seen, the comple-
mentarity of true and falsgositive metrics is not just lost, it is
reversed, with high positiv&Kendallt correlations reflecting dia-
greement in system comparisoAsSuch a level of disagreement
between true and falspositive metrics is rather intriguing, all the
more so when it seems a quite systematic trend, as \iesee in
Section 5 on further datasets.

The contradiction is made possible by the implicit assumption
that relevance knowledge is complete in order for the metrics to
be strictly complementary. When it is not, the denominator of pre-

cision and antipreckion is no longer 0 &0Qbut4 0 &0 S, monly divided (eitherby natural design or by an artificial split)
where5 denotes the number of unjudged returned itetend the into a train setand a test set. We shall therefore define the varia-
metrics no longer add to 1. For instance, for the systems evaluatedpjesy | ¢eado ‘Q Bsbeingpiff i @0 ‘Q@and the ratingwas as-
in Figure 1, the percentage of unrated itefnat atop 10 cutoffis signedto the train or test subset, gpectively.Since the two sub-
8316% on averagever all the systems in the figuremost of he sets are disjoint, we always havei G ®&i & Thetraining in-
relevance knowledge is missing. . . put for a recommender system itherefore of@i QafiQ ~
The disagreement is however not fullgxplained by tfs 5 1 1ip so1 GO p, and the set 6@ QGfiQ v b
knowledge incompleteness: if judgments were simply missing at | b $6 QRO p is us:ed as the equivalent to relevance
random, we should expect the correlation between metricgigh ud for th : f luati .
decreaserather than becomin . . judgments for the computation of evaluation metrics.

g consistently negative. \tan Based on these variablassingi Qe abbreviation for Qa
therefore articipate that the disagreemenshould relate to the (and same fob | ceiud Q) vd)egcan expresmeaningfulprobg’-
strongly MNAR effects[.7,30,44,45] N the useritem observations bilities, suchasr) i ‘@@ denoing the ratio of users who like item
that are commonly availablr offline recommender systeraval- ‘O 1R o1 Mhe ratio of users that the system has observed in-
uation. Qur analysis willseek toclarify how these issues relate to terac,tri]ng with“Gthat is,t he Up o p h/ | ar[7edyand of t h
each otherWe start by seekingnswersthrough aformal analysis i oani dmihe ratio’ ofobserved interactions invol\,/in ifem 0

of the metrics an_d thglr opt_lmlzathrfollowmg up onrelatedprior that evidence a positive preferendthe averagédinarizedrating.
work on popularity biases in recommender system evaluafitin
42 Opt i mal Ranking for Fal

We will then confirm and illustrateour theoretical findings with
experimentsandempirical observationsunder different angles Our analysis of the agreement or disagreement between true and
falsepositive metrics is developed in terms of a comparison of the
optimal rankings tharespectivelyy maximizeand minimizeeach
n a rmpt%. %\/e selectfor this purpose precision andnti-precision
[17,29,41] as our primary metris, because dheir exact arithmetic
relation, and & a simple and most tractable case we shall ke
andA T & B.0Ne haveobservedn our experiments that our ana-
lytical findings generalize well to otheflalsepositive metrics ad
cutoffs as we will show with examples in Section 5

Figure 1: Anti -precision vs. precision (left) and fallout vs. re-
call (right), for condensed (top) vs. full (bottom) rankings in
MovieLens 1M. Kendall Weorrelation is shown for each plot.

variables in> ' that describe relationships between users and
items[7]: we definethe variablel ‘Castaking valuep iff the user
likes the item. We define & 0 Q€ff the user has been observed
interacting with the item in such a way that evidence of positive
or negative preferencé.e. an observation af ‘for the useritem
pair at hand)is obtaineddwe will say, for shortthata Ur at i ng
present inthe available data records.

The available observations (ratings) for an experiment are com-

S e

4 For mal

4. Notation and Prel i mi

Given a set of users and a set of items, we can formalizé&ey
elementsin evaluation experimentsby defining binary random

Anal ysi s

2 All the correlations are statistically significartt )  0.05 and so arell the Kendall
tand Pearson correlatiovaluesreportedeverywherein the rest of the paper.



The same aprior work [7,45] distinguishedbetweenthe true
and observed values of trygositive IR metrics (such ggecision
and nDCG)we can make the same distinction fdialsepositive
metrics the true value oA T @H of arankedrecommenadtion 'Y
is 1 if the first item in"Yis didiked by the target user, an@ other-
wise. And the observed value Afl @H3 1 if the target usedis-
likes the first recommended iterand a rating (hencedenotinga
negative preferencels presentin the test set for this useitem
pair. Analogous definitions apply to precisiowith Ul i k e v
of Ud[7]sWeishakus® andATOE wi t h a
the observed value of the respective metrics.

4.2.1 TruositiveOptimals Cafiamares and Caste]lg proved
that the optimal recommendation that maximggue P@1ranks
items by nonincreasing value othe following ranking function

3 Q Nl Qi dme (1
That is, ranking the item¥& ' by decreasing order & "Qpro-
ducesa recommendatiofY that maximizes0a pof'Yin expecta-
tion. The reader is referred tf7] for the detailed proof, but the
intuition is that the optimal recommendation is obtained by rank-

should minimizeanti-precision(the lower the bettex Thus, the op-
timal ranking functionsfor anti-precisionareas follows:

3 Q n 1 Qi Gl Qi dime (©)
3 Q n ol enQd &1 dbime
s e 01 BE
o i @i d o T e (@)

where we apply similar steps as in equationF2om equationsl

i randg & fgstcenclusiorfollows right away.
Uh at Concludion 1 6 Thie eptimat ranking for truprecision and true

anti-precision are identigahs their ranking functions are equiva-
lentz "Qf 3 Q

The optimal rankings for tru® andA T CbEig identical means
that the two metrics agree on the comparison of any recommenda-
tion to the optimal andvorst rankings(the latter being the inverse
of the former) This agreement in comparisons to the extremes may
make us expect that perhaps the mesrivould tend to agree, at least
as a general trend, in the comparisons between systems in between
the two extremesWe will check this empirically irgection 5.

In contrast we see irequations2 and4 that the optimal rank-

ing items by decreasing probability of relevance (aRin b er t s o nu.$

probability ranking princife [39]), with the additional condition

that the target user has not been observed interacting in the sys-

tem with the recommended itentsefore(i.e. no training rating is
present for the useitem pair), a requiremenfor discoverythat is
usual in most recommendation scenarios.

In the same lemma, they proved that when observed precision
is computed by using a random split of available ratings, thg-o
mal ranking for observe@as pis defined by:

30 Rl Gwd di dwe

i GHOR 61 @mE L hol EmE
n o1 dme ! Qi o1 &

where @0 d e n o teguivalence, mrd in the second step we
have applied Bayesian inversions plus the fact thaiQi o

01 O'@EQ({sice a test rating is by definition not in training),
andn 6 Q4 @ae o1 @' Eabecause

1. When ratings are partitioned into training and test subsets uni-
formly at random by a given split ratio), the probability of test
and training are proportional to the probability of rating (mul-
tiplied by the corresponding ratio).

2. The probability that a rating goet either side of the split is
the same for all items, and is therefore independent from any
item characteristic such as its relevan@.

Note that in[7] the probabilities areexpressedn terms of the

i o \@idable while for ouraimsin this paper we rewrite them,

equivalently, in terms 0b 1 &(&g. in equation 2 abovd)ecause

this representghe input that recommender systems can saed

it is more convenient for our line of analysis

4.2.2 FalsBositive Optimals Given thatanti-precisioncan be
defined as precision on flipped relevar{@é&,29,41], we candirectly
infer that the optimal rankings that minimizanti-precisionare de-
fined by 1) replacingi for i ‘Gmxequations 1 and;2and 2) e-
versingthe ranking e.g. bya negativesignon the ranking function
We reverse the rankin@unction because while the optimal ranking
for precisionshouldmaximizethe metrig the opposite is the case
for falsepositive merics: the optimal ranking foranti-precision

ings in observed metric valuesenot quite the sameThe optimal
ranking functionfor observedA T 0&quation 4)s the product of
i. The oppositeof theU'n e g aating drir | ‘@i G@This is

alflouble negatiotrof the corresponding term in equation 2.

ii. The popularity oddsn 6 1 @dMep n o1 @WEa monoton-
ically increasingfunction of popularityny 6 i &®&he exact
same component is present in equation 4.

Having popularity(in the termii.) as a component of the ranking

function, multiplied by a negativaumber(as is the terni.) means

that the maoe popular an item is, the lower it is placed in the opti-

mal ranking.We can therefore conclude, to begin wjtihat

Conclusion 2 & The popularity biagends to worlagainst observed
anti-precision: the metric is biased to favor the recommendation of
unpopular items in offline evaluation

Interestingly, his isthe exact oppositef the behavior otrue-
positive metrics[7], in which offline evaluation tends to reward
the recommendation of popular itemkn the next section, w an-
alyzefurther consequences aluch opposing trends

4 . Bopularity Bias in Fal
As noted, be difference in theptimal rankings for obsenat pre-
cision and antiprecision is inthe ; 1 ‘@uai G@erm for ob-
servedA T 0QrEequation 4, in place of I ‘@01 dG@dr observed
0 in equation 2Thisterm is responsible fothe oppositeeffect of
popularity in the two metrics, and also explains why ttree and
false positive metricanay comeo disagreevith each other as we
shall seeBut we shall identify very specific conditions for thi%
or the opposit& to be the casewhich essenally relate to the
strength of the popularity biagsand whether it goes along with or
against the relevance of item#/e do so, firstin terms ofa generic
pair of itemsand the order in which thewo optimal recommen-
dations would rank themAfter that, we will analyzethe global
trends that arisdan specific datasetas aresult of, simply put,how
many pairsof itemsthe two rankings agree or disagree upon
The precise condition for th agreement odisagreemenof op-
timal rankingsover a given pair of itemsan be formalized by the

S e



Users

Training Test Training Test Training Test
1110011100 1000010000 1110.1110.
» FRRG 10 0o ) b BR[| RO | |
P@1 antiP@1 P@1 antiP@1 P@1 antiP@1
@b | 06 04 Typical case wher@ @b | 02 0.8 P andantiP disagree @b | 06 0.2 Rare case wherB andantiP
Rankings{ } andantiP disagree because } even ifp(rel|train,) is } agree because popularity i
(bay| 0.2 0.2 popularity is quite steep (b,a) 0 0.4 steeper than popularity (ba)| 02 0.4 just not steep enough
f f@  fb) Agpf/maxgyf f@  f(b) Agpf/maxgpf f@  f(b) Agpf/maxgyf
odds(p(train|)) | 1 0.25 | 0.75 Popularity agrees with 1 0.25 | 0.75 p(relltrain,’) is steeper 0.666 | 0.429 | 0.357 Bothp(rel|train,)
. p(rel|train,’) butis than popularity, but agrees andp(-rel|train,)
p(rel|train,) | 0.6 0.5 | 0.166 steeper thamp(rel|erain, ) 0.2 0 1 with it, and the latter is 0.75 | 0.333| 0.555 are steeper than
p(=relltrain,) | 0.4 0.5 0.2 andp(—rel|train,’) 0.8 1 0.2 steeper thanp(—rel|train,) | 0.25 | 0.666 | 0.625 popularity
ep()| 06 | 0125 Optimal ranking oP 0.2 0 Optimal ranking oP 0.5 | 0.143 Optimal ranking oP
@antip() | 0.4 [¢0.125 andantiP disagree ¢0.8 | ¢0.25 andantiP disagree ¢0.166| ¢0.286 andantiP agree

Figure 2: Toy examples illustrating the formal analysis for observed

unrated items. Calculations are straightforward W|th>eq uations 2, 4, 5, and the definition Of =« >+~§

8,and w7 Hill s8

tion 4.1. For instance, in example #1, w= b g%t >

following definition and lemma.

Definition & Given two functions®@], © a , overthe set of
items' , we say thatQis steeper thafQover two itemscfon ! if
its decrement ratio is higher:
FRQ SO0 QOs SO TAN OTAYS 3 RQ
FAg@Q [ AoRQd 1T AoRQd | AgQ
Lemma & The optimal ranking for precision and antprecision
of any two given items disagree if and only if either of the two
conditions hold:
a) The odds ofy 6 i ¢8Qis steeper tham | ‘@i d'Qanddisa-
grees withf i ‘@i ¢h"@E comparing the two items.
b) The odds ofy 0 1 ¢8"Qis steeper tham, | ‘@i b (Enddis-
agrees with 1 ‘Qni ¢h"@E comparing the two items.
Proof 8By (d iinglra garee kmrettsaione item is more pop-
ular but has a lower average rating than the other. The eanis
proved by considering all possible cases of agreement or disagree-
ment between popularity and the relevance density, and simple
algebraic manipulation of inequalitiegaking into account that
HioQad Cﬁm‘and 1 Qui ditalways disagreewith each
other sincen [coll (ﬁms 1" Q1 @b hime A

The intuition behindthis lemmais that popular items with
many ratings tend toget a higher chance of accumulating more
positive ratings, whichcanturn into true positivesin evaluation
But by the same reason, popular items also carry a Isigitistical
potential forproducingfalse positivesThus, recommending these
items is found ® be good (in terms of true positives) but also bad
(in false positives)f an itemdis much more popular than another
temo( popularity is very UUsteep
chances aréwill have both more positive and negative ratings
than c&and will hence contribute higher scores in both true and
falsepositives, thus producing disagreements betwedhe two:
while true-positive metrics would suggest ranking) before o,
falsepositive metrics wouldadvisethe opposite.Only if @had
such an extremely highefor lower) average rating thamomight
it add upmore positive(or negative ratings thang in such a way
that both metrics would agree to rankbeforec(or ybeforedy.
We illustratenext such cases andtuitions alongwith the lemma
through toy examples, followed by measurements on real data.

(5

metric values. Blue cells represent ratings, and white cells
N e > g > Hi
8  fOr b gt »Hi

89 8

4.3.1 Toy Exampldsigure 2 showghreeexamples that illustrate
the patternscharacterizedy the lemma We consider we only have
two itemséanday and ten users. Let us assume we apphd&0%
random split into training and test for whatever ratings are availa-
ble, in such a way that, as a simplification, the exact same number
of ratings(and rating valuesfall on each side of the split.ofurther
simplify the presentation of the example, we assume users fall en-
tirely on only one side of the splibit is easy to see that this does
not involve any loss of generality in the pdmwe aim to illustrate.

In this toy setting, we compare two recommendations, that are
delivered to all users: one that ranksbeforecy and one that does
the opposite. We comput@@1 andA T G@H. and, as is not uncom-
mon [3], in the example we only compute the metrics over target
users who have at least some test rating. In this settd@,l of
the ranking@¥ciy for instance, is equal to the ratio of target users
who have a positive test rating fah andA T G@HLis the ratio of
target users who have a negative ofidne three examples in Fig-
ure 2illustrate different casef how the relation between popu-
larity and the average rating determine the agreement or disagree-
ment between théwo metrics.

In example #1 the difference in average rating between the two
items is small, whereadis 75% less popular (in odds) thé@riThis
makes precision and anfirecision disagree in observed value.

Example #2 shows a case where the average rating is ex-
tremely steepfj i ‘@01 i 100% smaller thaipi ‘@01 e
while the popularity difference is the same as in eyge #1. How-
ever, the average rating agrees with popularity, and the latter is still
steeper than the complement of the formgr: 1 ‘@i Qs just
0% songller thai s iu @rh  BiR#a consegeengerpcjsionand e n
anti-precision still disgree, confirming the lemma.

Finally, example #3 represents an atypical case where popu-
larity is rather flat, more than both the average rating and its com-
plement, in such a way that now th®vo metrics agree.

Having analyzed the agreemerdr disagreemenbf optimal
rankings in terms of a generic individual item pair, we now exam-
ine the trends that can be observed in real data that are commonly
used for offline recommender system evaluation.

4.3.2 Observations on Reata For our illustrative purpose we
take MovieLens 1M31] as a common example (equivalent trends
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noi &¢Qe % iterr crease, respectively, with popularity (left). The average rat-
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Figures 3 and 4 further illustrate our line of analysisFigure3
right confirms that indeed the optimal rankings for observed pre-
are observed in other similar datasetgkingrating values 4 as cision and antiprecision are quite in opposition to each other
indicative of relevance, and 4 as reflecting norrelevance Table MovieLens 1MFigure 3 left shows how theaverage rating (and
1 confirms the correspondena# distribution steepness and align-  therefore its complement) has a rather smooth linear decrease,
mentwith metric agreement, andhows how frequent each case is  while the popularity distributionr) 6 i &@kas amuchmore ag-

in the relation between popularity and relevance density. Yivel gressivedecrease in comparisoRigure4 bottom shows how pop-
that the optimal rankings for precision and afrecision disagree ularity is stronger thanthe relevanceratio when multiplied in
on the vast majority (82.4%) of item pairs. The main cause for the 3 : the ranking function has a strong (negative) correlation
disagreement betweep and3 lies in the steepness of the  with popularity () 0 | &®left), and a very weak correlation with
popularity distribution, which is higher than the steepness of both /1 ‘@ui i@Eght). Sincethe popularity oddss multiplied by a
ni Q@i d@aEndrn | ‘@i Gk 63.3% of all item pairs. negative value i ‘@ui Mg "Qdecreass with popu-

The popularity distribution can be expected to be steeper than larity (Figure4 bottom left) and popular items shoulithereforebe
the relevance density (and its complement) in common recommen- ranked lowfor an optimal ranking. The opposite is the case fgr

dation environments: popularity biasé¢§ 0 i @&@nver"Pare com- (Figure 4 top): it very strongly correlates with popularity (left) be-
monly exacerbated by a variety of exogenous factoreow users cause it is multiplied by a positive numbgri ‘Qoi Gite

discover choice§7], some of which are further subject to setfin- 4.33 Which Metric is Right?0ur analysis thus finds that the
forcement[16]. These factorsio not affect intrinsic user ta_stes observed values of true and falpesitive metricswill tend to
(N1 ‘@i d@iver'@to any comparable extenthe popularity stand in contradictionof each otheiin offline recommender sys-
steepness is further amplified by the odds functignp 1 in tem experiments. We should naturally wondeygiven this situa-
equations 2 and 4hat has a slopé p. If the odds ofpopularity tion, either of the measurements should be misleading, or both
happens to be not steeper than the average rating or its complement - 1d be providing a correct observation in their own weBy

for specific item pairs, the lemma states tizatandz  still have (#orreclrwe meanagreéng with true metric values in the com-

a chance to disagree, if popularity agrees wittle steepest average  parisonbetweensystemsSince we have seen that false and true
rating (as in toy example #2). We can thereby state the following positive metrics tendo disagree in their observedomparisons
conclusion, which we will further contrast empirically in Section 5: ;¢ they fully agree irtheir true valuesthen only onecan be cor-
Conclusion 3 & The optimal rankings of observed precision and rect in its observed valuéthe question iswhich one?Answering
anti-precision can be expected to oppose each other as a general tréfig question on a formal basis is a challenge that we envision as
in common datasets for offline evaluat©nly if the popularity - future work. As astep in that directionweseek empirical insights
tribution were unusually flat the optimals might tend to agree. on the issuen the next section



5 Empiti ©bservations

We run experiments in ordeio check and illustrate to what extent
and how faithfully our theoretical results are observen experi-
ments withreal dataexpodto empirical varianceand thepoten-

tial violation of our theoretical simplifications Also, while our
analysis was in terms of optimal rankings, we aim to examine how
this generalize to the comparison of rankingsther than the op-
timal, as can beeturned bycommonrecommenadation algorithms

On the other handwe seek to obserwshethereitherfalseor true-
positive metricsare more robustthan the otherto evaluation bi-
ases by checking their degree of agreement with unbiased esti-
mates of thecorrespondingrue metric values

5 Dat a
In addition toMovieLens 1M31], which we used irprevious sec-
tions, we shall use thé&rahoo! R330] and CM100K[7] datases,
which provide relevance judgmengampled uniformly at random,
thusenabing unbiased estimates of true metric valugbe details
of the datasets are shown ifable 2

The Yahoo! R data includes a traing set that was collected
from spontaneous user interaction with musia the Yahoo!
LaunchCast streaming servig@ence training data are MNAR)

and a test set containing ratings that each user was asked to enterage rating(Avg) with Dirichlet smoothing*

for ten items samjed uniformly at randon{30] (hence test ratings
are MARGmissing at randon Metrics computed on this datan-
figuration arethus unbiasedestimates of the values that would be
computed with a full ratingmatrixX i . e. t he

Ut 1 u e dnkimg Guhctidn @quaticn! 1) § £ ¥ e n

Table 2: Details of the datasets.

Dataset #Users #ltems #Ratings
MovieLens 1N 6,040 3,7061,000,20
Yahoo! R3 5,400 1,000 183,17'=129,179 train $4,000 test

CM100k 1,054 1,084 103584= 11,594n familiar music
+ 91,99®n unfamiliar music

[33], BPoissMH20] (BPMF in the figuresEALS[22], GBPR36],
ListRankMF [43] (LRMF) PNMF[52], GPLSA[24], RankSGD[26]
(RSGD)SLIM[34], SVD++28], WBPR[18], and WRMF[25]. Since
the optimality of algorithms is not the object of our analysis here,

we simply take the default configuration tfiesealgorithms in the

LibRec library which achieves a reasonalperformancein most
casesSome of them dmonethelesunderperform, and they are
usefulin our experiments as welit is as important for an evalua-
tion methodology to properly identifypoorly performingsystems
as it is tosingle outthe most effectiveones The potential metric
distortions we are studying here concerfor instancethe early
stages of parameter tuningfrom a suboptimal starting poird as
much as the comparison of highly optimized algorithms

In addition, weinclude three nonpersonalized recommenda-
tions: ranking by decreasing popularifffop), by decreasing aver-
p [7], and random
(Rnd). Finally, whenever useful, we will include nemersonalized
versions of the optimal rankings for true or observextric values
as definedby equations 1o 4. For true metic values theoptimal
Uoracl et

We can also reproduce typichiased measuremenfs Yo b s e r Virfofh& to estimate) | Qo | B@E

metric valuessuch a® andA 1 0)if this datasety splitting the
training set uniformy at random into a training and a test subset
6in such a way that test ratings are MNAR

53 0bserved Metric Di
Figure5aquite clearly confirms the contradiction between the ob-

The CM100k data includes about 100 ratings per user for music ggryed values oprecision andanti-precision This goes beyond

selected uniformly at randonAs a test set, we uniformly sample
20% of this data, thus obtainiMAR relevance judgmentfor un-
biased estimation ofrue metric valuesHowever, the remaining
subsefor training is also MARIn order to reproduce MNARput
dataas in real recommendation settingse useanformation avail-
able in thisdataset about whether users were familiar with the
music or not before being surveygds in[7]: we take as training
data only the nortest ratings for music that usershad already
heard beforeas a proxy for spontaneous usiéem interaction.On
the other hand, n order to reproduce the computation of biased
(observedmetric values, we simply take the set of all ratings for
familiar music as a MIAR dataset, which we randomly split into
training and (MNAR) tessubsets

In all three datasetspf observed metric value computatidhe
split ratio of the MNAR datais 80% ratings for training and 20%
for tesing, under 5-fold crossvalidation. We binarize rating val-
uesbased on a minimum relevance threshefue which is 4 on
MovieLens and Yahoo! R3, and 3 on CM100k.

5.R1I gorithms

Theparticularchoice ofrecommendesystemsfor our experiments
is nota critical point: we just need a representative set of il
haved stateof-the-art algorithms For this purpose we selesev-
eral collaborative filteringalgorithms implemented in the ibRec
library [21]: userbased and iteabbased kNNwith cosine similarity

our analysis in terms of optimal rankings: distinctpostive cor-
relation is displayedbetween both metrics in all three datasets
mearing that observedprecision andanti-precision disagree in
more pairwise system comparisorthan those upon whichthey
agree The observations we find here would correspond to our toy
example #1 in Figurg: though we omit further graphs in the in-
terest of space, it is easy to check that the popularity is steeper
than the average rating in all three datasets, and correlates posi-
tively with the average rating for most item pairs (two reasons for
the observed value of metrics to disagree).

The behavior of the metrics in terms of optimality can thus pro-
vide an explanation for their observed overall contradicting trend
in system compasons. In particular, we thufind that:

Conclusion 4 & Observed precision and gmtecision tend to disa-
gree with each other in the comparison between systenjsst in
optimal rankings)n offline experimentwith common datase®nly

if the popularity distribution were unusually flat the metriasuld
come to an agreeing trend.

We also find validation for our formulation of the optimal rank-
ings, which are confirmed as bounds of ngrersonalized alg-
rithms for the respective metriqthe optimal ranking forA T 0OrE
the waxisandthe optimal for0 in the waxis) We confirm that he
optimal recommendation in each metric is woi@r nearlyd for
the other metric.We further seethat popularity isvery close to

acce:¢

sagreem



a) Observed metric values (MNAR test data)

b) True metric values (MAR test data)

MovielLens 1M Yahoo! R3

CM100k

AN

Yahoo! R3 CM100k

Figure 5: Regular evaluation of true and false -positive metrics on MNAR data (left) and true metric values bases on unbiased

MAR test data (right). The optimal recommendations for precision and anti

-precision are shown as a green and red dot, respec-

tively. The optim als for true metric values are the same on the right graphs (as per Conclusion #1), displayed as a unique red
dot. Kendall Weorrelation of the system rankings is shown in each graph. The respective relevance judgment coverage ratios at
cutoff 10 for obse rved metric values (left) are 15.97%, 5.43% and 1.10% (average across systems) for MovieLens 1M, Yahoo! &

CM100Kk, respectivel y. For true
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the optimal ranking for 0, and is therefore among the worstc-
ommendations imA T 0Qas predicted irSection 43 (Conclusion #2)
We canrealizein the figurethat personalized algorithms can
do better than the notpersonalized optimal, also as one might ex-
pect (except in CM100kvhere collaborative filtering fails to im-
prove over popularity due to data sparsitgs reported if8]). We

metric values (right), it
nonethelesssee that he disagreement between the two metrics
generalizesto non-personalized algorithmsfor instance,while
WRMFis the best system imbservedprecisionin Yahoo! R3it

appeasto be thesecondworst in observed antprecision

5 irue Metric Agreement

We now take a loolat the true metric valugsusing the two da-
tasets that supportunbiasedmetric estimates: Yahoo! R3 and
CM100k as explained in Section 5Rigure5b shows the results.
We see that thaegativecorrelation betweentrue precision and
anti-precisionis quite strong &i.e. they highly agree in ranking
systemsThis is a manifestation of our analytical result in Conclu-
sion #1, whereow we see that the exact coincidence of the opti-
mal rankings for precision and anfirecision generalizes to a
onot exact bu® strong agreement between the two metrics in
comparing any two systems other than the optimals

Conclusion 5 & True precision and anprecision tend to agree with
each other in the comparison between systems (not just in optimal
rankings) in offline experimentgith unbiasedestdata Based on

the theoretical analysis.ewmay expect thi® be independefrom

the shape of the popularity distribution

We thus empirically confirmthat we can expect agreement be-
tween true precisiorand antiprecision (Figure5b), and disagree-
ment between their observed valu@sgure &). However, thefor-
mal analysisdoes notestablishwhich metric should agree omot
with its true value&both situations are theoretically possibléve
analyzethis question empirically bylotting the true and observed
values of each metric against each otherFHigure6. We see that
while the MNAR measurements of precision are quite consistent
with the unbiased MAR estimateanti-precisionseems to suffer
from a severe distortion by the MNAR bia® the point that the
system comparisons are almost reversis an illustration of how
our analysis generalizes to othéalsepositive metricsthe figure
shows similar relations for fallout vs. recall in CM100k. We can
see that the patterns are quite equivaléhis is just one example,
and analogous observations are also obtained for any of the com-
parisons shown in all previous figures.









