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ABSTRACT 
False-positive metrics can capture an important side of recommen-
dation quality, focusing on the impact of suggestions that are dis-
liked by users, as a complement of common metrics that only 
measure the amount of successful recommendations. In this paper 
we research the extent to which false-positive metrics agree or dis-
agree with true-positive metrics in the o ine evaluation of recom-
mender systems. We discover a surprising degree of systematic 
disagreement that was occasionally noted but not explained in the 
literature by previous authors. We nd an explanation for the dis-
crepancy between the metrics in the e ect of popularity biases, 
which impact false and true-positive metrics in very di erent 
ways: instead of rewarding the recommendation of popular items, 
as with true-positive, false-positive metrics penalize the popular. 
We determine precise conditions and cases in the general trends, 
with a formal explanation for our ndings, which we con rm and 
illustrate empirically in experiments with di erent datasets.  
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1 Introduction 
Matching what users like is a primary prerequisite for recommen-
dation to be successful: it is commonly referred to as the accuracy of 
recommendation. Accuracy is generally measured as a function of 
the number of recommended items that users liked: the true posi-
tives, which can be counted, cut off, weighted, averaged, etc. Exam-

ple true-positive metrics include precision, recall, mean reciprocal 
rank (MRR), or normalized discounted cumulative gain (nDCG).  

Our focus is the flip side of accuracy: recommended items that 
users disliked ỡthe false positives. This is not a common perspec-
tive, yet it has been occasionally considered and/or studied in the 
field [12,13,17,41], and is common in evaluation practice in specific 
business domains. We consider whether false-positive metrics 
capture anything different from true-positive. We find not just dif-
ferences but blatant disagreements, the causes of which we then 
investigate. We further consider whether the disagreements are a 
matter of a complementarity in perspectives, or perhaps one type 
of metric is just delivering more correct and reliable measurements 
than the other. 

We find that the agreement between true and false-positive met-
rics is tightly related to missing relevance information, and the fact 
that this information is missing not at random (MNAR) [30, 45,46]. 
The effect of such biases in recommendation algorithms and offline 
evaluation has become the object of growing research in the field 
[3,7,9,27,44,49]. In particular, algorithms and metrics have been 
found to be biased to favor the recommendation of popular items, 
beyond their objective quality, and progress has been made in man-
aging these effects. But how such biases may affect false-positive 
metrics has not been studied or addressed, as far as we are aware. 

 We address these questions through a theoretical analysis 
based on the formalization of expected biased and unbiased metric 
values, and the rankings that optimize them. We find fundamental 
differences in the manifestation of the biases with respect to prior 
work: somewhat paradoxically, false-positive metrics unfairly pe-
nalize the recommendation of popular items, just as true-positive 
metrics unfairly reward them. We also find an explanation for the 
disagreements between false and true-positive metrics in recom-
mender system comparisons, and we identify key elements to dis-
cern whether one of the two types of metrics may be more reliable 
than the other, in terms of capturing the underlying truth beyond 
the biases. We confirm and illustrate our analytical findings with 
empirical observations over different publicly available datasets.1 

2 Background and Related Work 
The practical goal of a recommender system is defined by the par-
ticular purpose of recommendation within a specific application. 
The understanding of what a useful recommendation is has evolved 
and grown significantly beyond producing accurate rating estimates 
[1], towards considerably wider perspectives over the last two dec-
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ades [10,15,32]. Amid many different (sometimes conflicting) objec-
tives, matching the end-userủs tastes can be understood as a primary 
requirement for recommendation to make sense. This dimension is 
broadly referred to as the accuracy of recommendation. 

When assessing accuracy, different angles can be considered. 
The commonest approach focuses on the ability of a system to de-
liver as many good recommendations to as many people as possi-
ble [23]. Perfect accuracy is usually viewed as an impossible goal 
and users are expected to be tolerant of some error. If there are 
useful choices in the mix, uninteresting recommendations will 
hopefully be ignored. For these reasons, recommender system 
evaluation practice and research has largely focused on counting 
(evidence of) true positives [42]. Some attention has been paid to 
the flip side: the (evidence of) false positives [12,17,41]. We too 
find it worthwhile pondering the potential negative effects that 
disliked recommendations can have on the user experience. 

2.1 █e Cost of a Bad Recommendation 
Disliked recommended items have a negative effect on the user 
experience. False positives are a clear concern in specific domains 
such as automatic music playlist generation [15]. Here, users may 
commonly tolerate background music that is just nice, but they 
may be annoyed by an occasional unpleasant track. As a conse-
quence, the skip rate is a common metric in music and video 
streaming [36]. Skip behavior is also a common signal in recent 
challenges as a target for prediction, and/or as part of released data 
for evaluation (e.g. [5]). Some authors have likewise applied met-
rics of least non-relevant music to evaluate playlists [19]. 

The skip rate has been similarly used in Web search to assess 
the cost in reading and skipping effort of non-relevant results [48]. 
Dating online is also often mentioned as a domain where false pos-
itives involve a significant cost [37]. Information Retrieval (IR) 
metric frameworks have been likewise developed that consider the 
cost and benefit involved in delivering relevant and non-relevant 
documents [53]. Beyond IR and recommender systems, false posi-
tives in classification are important in particular domains, and 
cost-aware machine learning theory and methods have been long 
developed [14,38]. From a wider perspective, scholars have studied 
how a bad recommendation can hurt user trust [11]. Psychological 
studies have described a negativity bias in human perception, 
whereby bad impressions may sometimes outweigh good ones in 
our overall assessment of an experience [2,51]. 

2.2 False-Positive Metrics in Recommendation 
The recommender systems literature is rich in accuracy evaluation 
methodologies [4,7,23,42,46]. Most focus on true positives as the 
recommendation objective to be assessed. One notable exception 
to this is the use of ROC (Receiver Operating Characteristic) 
curves and the area underneath [42], which employ a false-posi-
tive metric ỡfalloutỡ in the ὼ axis. Frolov and Oseledets [17] and 
Sánchez and Bellogín [41] explicitly considered false positives in 
their definition and observation of Ừanti-metricsừ, which compute 
any common true-positive metric on flipped relevance judgments. 
For instance, fallout [38] is the anti-metric for recall, and the ratio 
of returned non-relevant items (so-called anti-precision [17,29, 
41]) is the anti-metric for precision. Fallout his also occasionally 
re-ported among other evaluation metrics in some work [12,13]. 
In IR, Lipani et al. [29] related the disagreement between true-posi-

tive and false-positive metrics to the incompleteness of relevance 
knowledge, and used them to propose a correction method for the 
potential biases in pooling-based evaluation of search results. 

While true-positive metrics consistently display a high correla-
tion between each other throughout reported research, the afore-
mentioned work systematically reports frequent contradictions be-
tween true-positive and false-positive metrics. While such disagree-
ments were discussed in the corresponding work, a conclusive or 
systematic explanation has not been described, and is sought here.  

As we shall see, the discrepancies are caused by relevance 
knowledge incompleteness, a particularly acute condition in of-
fline recommender system evaluation. More specifically, the cause 
lies in the fact that ratings are typically MNAR in common datasets 
[30,45], where heavy popularity biases pervade the data, impacting 
the algorithms and metrics that assess their accuracy. Important 
progress has been made in the last decade in confirming, measur-
ing, explaining and coping with such popularity biases [7,9,27,44, 
46,49]. While all this prior research has focused on true-positive 
metrics, the question remains whether the results reached so far 
would similarly apply to false-positive metrics. We address the 
question here and, as we will see, the answer differs considerably 
from the corresponding prior findings. 

3 False-Positive vs. True-Positive Metrics 
We thus find motivation for the use of evaluation metrics that as-
sess bad recommendations, along with (or complementarily to) 
metrics that assess good. Simple metrics involving false positives, 
such as fallout [38] or anti-precision [29], can suitably meet this 
purpose; they are defined as: 
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where TP and FP denote the number of relevant and non-relevant 
retrieved (recommended) items respectively, and TN is the number 
of non-relevant items that are not returned. The measures can be 
respectively defined as recall and precision using non-relevance in 
place of relevance. If skipping a song in a music streaming session 
is taken as a sign of non-relevance, then ÁÎÔÉ0 is the skip rate, i.e. 
the ratio of played songs that were skipped [5,15,35].  

One may expect that false-positive metrics measure quite a 
similar thing to true-positive metrics, just Ừfrom the other endừ. 
False-positive can be expected to strongly (negatively) correlate 
with true-positive metrics. For instance, for anti-precision this re-
lationship is direct and linear, as ÁÎÔÉ0 is the exact arithmetic com-
plement of precision:  

0
40

40 &0
ÁÎÔÉ0ρ 0 

Figure 1 top-left illustrates this relationship in the metric values 
of ÁÎÔÉ0@10 vs. 0@10 for a set of collaborative filtering algo-
rithms (detailed later in Section 5.2) on MovieLens 1M [31], a 
widely used dataset example. The metrics in these graphs are 
measured taking so-called condensed rankings [6,40,50], where 
unrated (unjudged) items are excluded from the evaluated rank-
ings before computing the metrics. We can see the algorithms 
stand on a straight ώ ρ ὼ line, confirming that ÁÎÔÉ0@10 
ρ 0@10. In essence, they are the same metric. The relationship 
between fallout and recall is not exactly linear due to a different 
denominator in the two metrics. We can see in Figure 1 top-right 



  
 

 

that they are still strongly negatively correlated. Since true-posi-
tive and false-positive metrics are inversely oriented (the lower 
ÁÎÔÉ0 and fallout the better), this negative correlation means 
agreement on which of almost every pair of systems is best. 

These example observations are obtained however with an ex-
perimental option (condensed rankings) that makes relevance 
knowledge artificially complete in the ranking top. Offline recom-
mender system evaluation is generally conducted with highly in-
complete relevance knowledge, and even though condensed rank-
ings have been occasionally used in the literature [4,9,23,48], they 
are not generally considered the best option: they result in massive 
losses in effect size and statistical significance, and a deviation from 
the actual task that the evaluated systems are meant to solve ỡthe 
systems need to rank all the items in the dataset, and not just the 
judged ones. In fact, condensed rankings just do not work in the 
common case when only positive ungraded user feedback is avail-
able for evaluation: all systems would get the same metric score in 
that case. Full rankings is therefore by far the most common option 
in recommender system evaluation nowadays [3,4,42]. 

Figure 1 bottom-left illustrates what happens with this more 
common experimental configuration. As can be seen, the comple-
mentarity of true and false-positive metrics is not just lost, it is 
reversed, with high positive Kendall † correlations reflecting disa-
greement in system comparisons.2 Such a level of disagreement 
between true and false-positive metrics is rather intriguing, all the 
more so when it seems a quite systematic trend, as we will see in 
Section 5 on further datasets.  

The contradiction is made possible by the implicit assumption 
that relevance knowledge is complete in order for the metrics to 
be strictly complementary. When it is not, the denominator of pre-
cision and anti-precision is no longer 40 &0, but 40 &05, 
where 5 denotes the number of unjudged returned items ỡand the 
metrics no longer add to 1. For instance, for the systems evaluated 
in Figure 1, the percentage of unrated items 5 at a top 10 cutoff is 
83.16% on average over all the systems in the figure: most of the 
relevance knowledge is missing. 

 The disagreement is however not fully explained by this 
knowledge incompleteness: if judgments were simply missing at 
random, we should expect the correlation between metrics to just 
decrease rather than becoming consistently negative. We can 
therefore anticipate that the disagreement should relate to the 
strongly MNAR effects [7,30,44,45] in the user-item observations 
that are commonly available for offline recommender system eval-
uation. Our analysis will seek to clarify how these issues relate to 
each other. We start by seeking answers through a formal analysis 
of the metrics and their optimization, following up on related prior 
work on popularity biases in recommender system evaluation [7]. 
We will then confirm and illustrate our theoretical findings with 
experiments and empirical observations under different angles. 

4 Formal Analysis 

4.1 Notation and Preliminaries 
Given a set of users ל and a set of items Ꞌ, we can formalize key 
elements in evaluation experiments by defining binary random 

variables in ל Ꞌ that describe relationships between users and 
items [7]: we define the variable ὶὩὰ as taking value ρ iff the user 
likes the item. We define ὶὥὸὩὨρ iff the user has been observed 
interacting with the item, in such a way that evidence of positive 
or negative preference (i.e. an observation of ὶὩὰ for the user-item 
pair at hand) is obtained ỡwe will say, for short, that a Ừratingừ is 
present in the available data records.  

The available observations (ratings) for an experiment are com-
monly divided (either by natural design, or by an artificial split) 
into a train set and a test set. We shall therefore define the varia-
bles ὸὶὥὭὲ and ὸὩίὸ as being ρ iff ὶὥὸὩὨρ and the rating was as-
signed to the train or test subset, respectively. Since the two sub-
sets are disjoint, we always have ὸὶὥὭὲὸὩίὸπ. The training in-
put for a recommender system is therefore όȟὭȟὶὩὰόȟὭ ᶰ

ל Ꞌ πȟρ ȿ ὸὶὥὭὲόȟὭ ρ, and the set όȟὭȟὶὩὰόȟὭ ᶰל
Ꞌ πȟρ ȿ ὸὩίὸόȟὭ ρ is used as the equivalent to relevance 
judgments for the computation of evaluation metrics. 

Based on these variables, using ὶὩὰ as abbreviation for ὶὩὰρ, 
(and same for ὸὶὥὭὲ and ὸὩίὸ), we can express meaningful proba-
bilities, such as ὴὶὩὰȿὭ, denoting the ratio of users who like item 
Ὥɴ Ꞌ; ὴὸὶὥὭὲȿὭ, the ratio of users that the system has observed in-
teracting with Ὥ ỡthat is, the Ừpopularityừ of the item [7,44]; and 
ὴὶὩὰȿὸὶὥὭὲȟὭ, the ratio of observed interactions involving item Ὥ 
that evidence a positive preference ỡthe average binarized rating. 

4.2 Optimal Ranking for False Positives 
Our analysis of the agreement or disagreement between true and 
false-positive metrics is developed in terms of a comparison of the 
optimal rankings that ỡrespectivelyỡ maximize and minimize each 
metric. We select for this purpose precision and anti-precision 
[17,29,41] as our primary metrics, because of their exact arithmetic 
relation, and as a simple and most tractable case we shall take 0ͽρ 
and ÁÎÔÉ0ͽρ. We have observed in our experiments that our ana-
lytical findings generalize well to other false-positive metrics and 
cutoffs, as we will show with examples in Section 5.  

2 All the correlations are statistically significant at ὴ  0.05, and so are all the Kendall 
† and Pearson correlation values reported everywhere in the rest of the paper. 
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Figure 1: Anti -precision vs. precision (left) and fallout vs. re-
call (right), for condensed (top) vs. full (bottom) rankings in 
MovieLens 1M. Kendall Ⱳ correlation  is shown for each plot.  
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The same as prior work [7,45] distinguished between the true 
and observed values of true-positive IR metrics (such as precision 
and nDCG), we can make the same distinction for false-positive 
metrics: the true value of ÁÎÔÉ0@1 of a ranked recommendation Ὑ 
is 1 if the first item in Ὑ is disliked by the target user, and 0 other-
wise. And the observed value of ÁÎÔÉ0@1 is 1 if the target user dis-
likes the first recommended item and a rating (hence denoting a 
negative preference) is present in the test set for this user-item 
pair. Analogous definitions apply to precision, with Ừlikeừ in place 
of Ừdislikeừ [7]. We shall use 0 and ÁÎÔÉ0, with a Ừhatừ, to refer to 
the observed value of the respective metrics. 

4.2.1  True-Positive Optimals.  Cañamares and Castells [7] proved 
that the optimal recommendation that maximizes true P@1 ranks 
items by non-increasing value of the following ranking function: 

ʒ Ὥ ὴὶὩὰȿὸὶὥὭὲȟὭ (1) 

That is, ranking the items Ὥɴ Ꞌ by decreasing order of ʒ Ὥ pro-
duces a recommendation Ὑ that maximizes 0ͽρ of Ὑ in expecta-
tion. The reader is referred to [7] for the detailed proof, but the 
intuition is that the optimal recommendation is obtained by rank-
ing items by decreasing probability of relevance (as in Robertsonủs 
probability ranking principle [39]), with the additional condition 
that the target user has not been observed interacting in the sys-
tem with the recommended items before (i.e. no training rating is 
present for the user-item pair), a requirement for discovery that is 
usual in most recommendation scenarios. 

In the same lemma, they proved that when observed precision 
is computed by using a random split of available ratings, the opti-
mal ranking for observed 0ͽρ is defined by: 

ʒ Ὥ ὴὶὩὰȟὸὩίὸȿὸὶὥὭὲȟὭ  
ὴὶὩὰȟὸὩίὸȟὸὶὥὭὲȿὭ

ὴ ὸὶὥὭὲȿὭ
ᶿὴὶὩὰȿὸὶὥὭὲȟὭ 

ὴὸὶὥὭὲȿὭ

ρ ὴὸὶὥὭὲȿὭ
 (2) 

where Ủθủ denotes rank-equivalence, and in the second step we 
have applied Bayesian inversions plus the fact that ὸὩίὸ᷈
ὸὶὥὭὲὸὩίὸ (since a test rating is by definition not in training), 

and ὴὸὩίὸȿὶὩὰȟὭᶿὴὸὶὥὭὲȿὶὩὰȟὭ because: 
1. When ratings are partitioned into training and test subsets uni-

formly at random (by a given split ratio), the probability of test 
and training are proportional to the probability of rating (mul-
tiplied by the corresponding ratio).  

2. The probability that a rating goes to either side of the split is 
the same for all items, and is therefore independent from any 
item characteristic such as its relevance [7].  
Note that in [7] the probabilities are expressed in terms of the 

ὶὥὸὩὨ variable, while for our aims in this paper we rewrite them, 
equivalently, in terms of ὸὶὥὭὲ (e.g. in equation 2 above), because 
this represents the input that recommender systems can see, and 
it is more convenient for our line of analysis. 

4.2.2  False-Positive Optimals.  Given that anti-precision can be 
defined as precision on flipped relevance [17,29,41], we can directly 
infer that the optimal rankings that minimize anti-precision are de-
fined by: 1) replacing ὶὩὰ for ὶὩὰ in equations 1 and 2; and 2) re-
versing the ranking, e.g. by a negative sign on the ranking function. 
We reverse the ranking function because while the optimal ranking 
for precision should maximize the metric, the opposite is the case 
for false-positive metrics: the optimal ranking for anti-precision 

should minimize anti-precision (the lower the better). Thus, the op-
timal ranking functions for anti-precision are as follows: 

ʒ Ὥ ὴ ὶὩὰȿὸὶὥὭὲȟὭᶿὴὶὩὰȿὸὶὥὭὲȟὭ (3) 

ʒ Ὥ ὴ ὶὩὰȟὸὩίὸȿὸὶὥὭὲȟὭ 

ᶿ ὴ ὶὩὰȿὸὶὥὭὲȟὭ 
ὴὸὶὥὭὲȿὭ

ρ ὴὸὶὥὭὲȿὭ
 (4) 

where we apply similar steps as in equation 2. From equations 1 
and 3 a first conclusion follows right away: 

Conclusion  1 ỡ The optimal ranking for true precision and true 
anti-precision are identical, as their ranking functions are equiva-
lent: ʒ Ὥᶿʒ Ὥ.  

The optimal rankings for true 0 and ÁÎÔÉ0 being identical means 
that the two metrics agree on the comparison of any recommenda-
tion to the optimal and worst rankings (the latter being the inverse 
of the former). This agreement in comparisons to the extremes may 
make us expect that perhaps the metrics would tend to agree, at least 
as a general trend, in the comparisons between systems in between 
the two extremes. We will check this empirically in Section 5.  

In contrast, we see in equations 2 and 4 that the optimal rank-
ings in observed metric values are not quite the same. The optimal 
ranking function for observed ÁÎÔÉ0 (equation 4) is the product of: 

i. The opposite of the Ừnegatedừ rating ὴ ὶὩὰȿὸὶὥὭὲȟὭ. This is 
a Ừdouble negationừ of the corresponding term in equation 2. 

ii. The popularity odds ὴὸὶὥὭὲȿὭ ρ ὴὸὶὥὭὲȿὭϳ , a monoton-
ically increasing function of popularity ὴὸὶὥὭὲȿὭ. The exact 
same component is present in equation 4. 

Having popularity (in the term ii .) as a component of the ranking 
function, multiplied by a negative number (as is the term i.) means 
that the more popular an item is, the lower it is placed in the opti-
mal ranking. We can therefore conclude, to begin with, that: 

Conclusion  2 ỡ The popularity bias tends to work against observed 
anti-precision: the metric is biased to favor the recommendation of 
unpopular items in offline evaluation.  

Interestingly, this is the exact opposite of the behavior of true-
positive metrics [7], in which offline evaluation tends to reward 
the recommendation of popular items. In the next section, we an-
alyze further consequences of such opposing trends. 

4.3 Popularity Bias in False Positives 
As noted, the difference in the optimal rankings for observed pre-
cision and anti-precision is in the ὴ ὶὩὰȿὸὶὥὭὲȟὭ term for ob-
served ÁÎÔÉ0 in equation 4, in place of ὴὶὩὰȿὸὶὥὭὲȟὭ for observed 
0 in equation 2. This term is responsible for the opposite effect of 
popularity in the two metrics, and also explains why the true and 
false-positive metrics may come to disagree with each other, as we 
shall see. But we shall identify very specific conditions for this ỡ
or the oppositeỡ to be the case, which essentially relate to the 
strength of the popularity bias, and whether it goes along with or 
against the relevance of items. We do so, first, in terms of a generic 
pair of items and the order in which the two optimal recommen-
dations would rank them. After that, we will analyze the global 
trends that arise in specific datasets as a result of, simply put, how 
many pairs of items the two rankings agree or disagree upon.  

The precise condition for the agreement or disagreement of op-
timal rankings over a given pair of items can be formalized by the 



  
 

 

following definition and lemma. 

Definition  ỡ Given two functions ὪȟὫȡꞋO ᴙ , over the set of 
items Ꞌ, we say that Ὢ is steeper than Ὣ over two items ὥȟὦɴ Ꞌ if 
its decrement ratio is higher: 
ɝȟὪ

ÍÁØȟὪ

ȿὪὥ Ὢὦȿ

ÍÁØὪὥȟὪὦ

ȿὫὥ Ὣὦȿ

ÍÁØὫὥȟὫὦ

ɝȟὫ

ÍÁØȟὫ
 (5) 

Lemma ỡ The optimal rankings for precision and anti-precision 
of any two given items disagree if and only if either of the two 
conditions hold: 
a) The odds of ὴὸὶὥὭὲȿ  is steeper than ὴὶὩὰȿὸὶὥὭὲȟ, and disa-

grees with ὴὶὩὰȿὸὶὥὭὲȟ in comparing the two items. 
b) The odds of ὴὸὶὥὭὲȿ  is steeper than ὴ ὶὩὰȿὸὶὥὭὲȟ, and dis-

agrees with ὴ ὶὩὰȿὸὶὥὭὲȟ in comparing the two items. 

Proof  ỡ By Ừdisagreeingừ we mean here that one item is more pop-
ular but has a lower average rating than the other. The lemma is 
proved by considering all possible cases of agreement or disagree-
ment between popularity and the relevance density, and simple 
algebraic manipulation of inequalities, taking into account that 
ὴὶὩὰȿὸὶὥὭὲȟὭ and ὴ ὶὩὰȿὸὶὥὭὲȟὭ always disagree with each 
other since ὴ ὶὩὰȿὸὶὥὭὲȟὭ 1̔̀ ὴὶὩὰȿὸὶὥὭὲȟὭ.  Ã 

The intuition behind this lemma is that popular items with 
many ratings tend to get a higher chance of accumulating more 
positive ratings, which can turn into true positives in evaluation. 
But by the same reason, popular items also carry a high statistical 
potential for producing false positives. Thus, recommending these 
items is found to be good (in terms of true positives) but also bad 
(in false positives). If an item ὥ is much more popular than another 
item ὦ (popularity is very Ừsteepừ over such two items), then 
chances are ὥ will have both more positive and negative ratings 
than ὦ ỡand will hence contribute higher scores in both true and 
false-positives, thus producing disagreements between the two: 
while true-positive metrics would suggest ranking ὥ before ὦ, 
false-positive metrics would advise the opposite. Only if ὦ had 
such an extremely higher (or lower) average rating than ὥ might 
it add up more positive (or negative) ratings than ὥ, in such a way 
that both metrics would agree to rank ὦ before ὥ (or ὥ before ὦ). 
We illustrate next such cases and intuitions along with the lemma 
through toy examples, followed by measurements on real data. 

4.3.1  Toy Examples.  Figure 2 shows three examples that illustrate 
the patterns characterized by the lemma. We consider we only have 
two items ὥ and ὦ, and ten users. Let us assume we apply a 50-50% 
random split into training and test for whatever ratings are availa-
ble, in such a way that, as a simplification, the exact same number 
of ratings (and rating values) fall on each side of the split. To further 
simplify the presentation of the example, we assume users fall en-
tirely on only one side of the split ỡit is easy to see that this does 
not involve any loss of generality in the points we aim to illustrate. 

In this toy setting, we compare two recommendations, that are 
delivered to all users: one that ranks ὥ before ὦ, and one that does 
the opposite. We compute 0@1 and ÁÎÔÉ0@1 and, as is not uncom-
mon [3], in the example we only compute the metrics over target 
users who have at least some test rating. In this setting, 0@1 of 
the ranking ộὥȟὦỚ, for instance, is equal to the ratio of target users 
who have a positive test rating for ὥ, and ÁÎÔÉ0@1 is the ratio of 
target users who have a negative one. The three examples in Fig-
ure 2 illustrate different cases in how the relation between popu-
larity and the average rating determine the agreement or disagree-
ment between the two metrics.  

In example #1 the difference in average rating between the two 
items is small, whereas ὦ is 75% less popular (in odds) than ὥ. This 
makes precision and anti-precision disagree in observed value.  

Example #2 shows a case where the average rating is ex-
tremely steep: ὴὶὩὰȿὸὶὥὭὲȟὦ is 100% smaller than ὴὶὩὰȿὸὶὥὭὲȟὥ, 
while the popularity difference is the same as in example #1. How-
ever, the average rating agrees with popularity, and the latter is still 
steeper than the complement of the former: ὴ ὶὩὰȿὸὶὥὭὲȟὥ is just 
20% smaller than ὴ ὶὩὰȿὸὶὥὭὲȟὦ. As a consequence, precision and 
anti-precision still disagree, confirming the lemma.  

Finally, example #3 represents an atypical case where popu-
larity is rather flat, more than both the average rating and its com-
plement, in such a way that now the two metrics agree. 

Having analyzed the agreement or disagreement of optimal 
rankings in terms of a generic individual item pair, we now exam-
ine the trends that can be observed in real data that are commonly 
used for offline recommender system evaluation. 

4.3.2  Observations on Real Data.  For our illustrative purpose we 
take MovieLens 1M [31] as a common example (equivalent trends 

 
Figure 2: Toy examples illustrating the formal analysis for observed metric values. Blue cells represent ratings, and white cells 
unrated items. Calculations are straightforward with eq uations  2, 4, 5, and the definition of ▬◄►╪░▪ȿ░ and ▬►▄■ȿ◄►╪░▪ȟ░ in Sec-
tion 4.1. For instance, in example #1, ▬►▄■ȿ◄►╪░▪ȟ╪ ϳ Ȣ, and ╪ȟ╫█ἵἩὀ╪ȟ╫█ϳ ȿȢ Ȣȿ Ȣϳ Ȣ  for ▬►▄■ȿ◄►╪░▪ȟ. 
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are observed in other similar datasets), taking rating values  4 as 
indicative of relevance, and  4 as reflecting non-relevance. Table 
1 confirms the correspondence of distribution steepness and align-
ment with metric agreement, and shows how frequent each case is 
in the relation between popularity and relevance density. We find 
that the optimal rankings for precision and anti-precision disagree 
on the vast majority (82.4%) of item pairs. The main cause for the 
disagreement between ʒ  and ʒ  lies in the steepness of the 
popularity distribution, which is higher than the steepness of both 
ὴὶὩὰȿὸὶὥὭὲȟὭ and ὴ ὶὩὰȿὸὶὥὭὲȟὭ in 63.3% of all item pairs.  

The popularity distribution can be expected to be steeper than 
the relevance density (and its complement) in common recommen-
dation environments: popularity biases (ὴὸὶὥὭὲȿὭ over Ὥ) are com-
monly exacerbated by a variety of exogenous factors in how users 
discover choices [7], some of which are further subject to self-rein-
forcement [16]. These factors do not affect intrinsic user tastes 
(ὴὶὩὰȿὸὶὥὭὲȟὭ over Ὥ) to any comparable extent. The popularity 
steepness is further amplified by the odds function ὴ ρ ὴϳ  in 
equations 2 and 4, that has a slope ḻρ. If the odds of popularity 
happens to be not steeper than the average rating or its complement 
for specific item pairs, the lemma states that ʒ  and ʒ  still have 
a chance to disagree, if popularity agrees with the steepest average 
rating (as in toy example #2). We can thereby state the following 
conclusion, which we will further contrast empirically in Section 5: 

Conclusion  3 ỡ The optimal rankings of observed precision and 
anti-precision can be expected to oppose each other as a general trend 
in common datasets for offline evaluation. Only if the popularity dis-
tribution were unusually flat the optimals might tend to agree. 

Figures 3 and 4 further illustrate our line of analysis. Figure 3 
right confirms that indeed the optimal rankings for observed pre-
cision and anti-precision are quite in opposition to each other in 
MovieLens 1M. Figure 3 left shows how the average rating (and 
therefore its complement) has a rather smooth linear decrease, 
while the popularity distribution ὴὸὶὥὭὲȿὭ has a much more ag-
gressive decrease in comparison. Figure 4 bottom shows how pop-
ularity is stronger than the relevance ratio when multiplied in 
ʒ : the ranking function has a strong (negative) correlation 
with popularity (ὴὸὶὥὭὲȿὭ, left), and a very weak correlation with 
ὴὶὩὰȿὸὶὥὭὲȟὭ (right). Since the popularity odds is multiplied by a 
negative value ὴ ὶὩὰȿὸὶὥὭὲȟὭ, ʒ Ὥ decreases with popu-
larity (Figure 4 bottom left), and popular items should therefore be 
ranked low for an optimal ranking. The opposite is the case for ʒ  
(Figure 4 top): it very strongly correlates with popularity (left) be-
cause it is multiplied by a positive number ὴὶὩὰȿὸὶὥὭὲȟὭ. 

4.3.3  Which Metric is Right?  Our analysis thus finds that the 
observed values of true and false-positive metrics will  tend to 
stand in contradiction of each other in offline recommender sys-
tem experiments. We should naturally wonder if, given this situa-
tion, either of the measurements should be misleading, or both 
could be providing a correct observation in their own way. By 
Ừcorrectừ we mean agreeing with true metric values in the com-
parison between systems. Since we have seen that false and true-
positive metrics tend to disagree in their observed comparisons, 
but they fully agree in their true values, then only one can be cor-
rect in its observed value ỡthe question is, which one? Answering 
this question on a formal basis is a challenge that we envision as 
future work. As a step in that direction, we seek empirical insights 
on the issue in the next section. 

Table 1: Frequency of agreement / disagreement and steep-
ness in MovieLens 1M.  

ὴὸὶὥὭὲȿ  
agrees withỴ The odds of ὴὸὶὥὭὲȿ  isỴ 

% item 
pairs ʒ  vs. ʒ  

ὴὶὩὰȿὸὶὥὭὲȟ 
steeper than ὴ ὶὩὰȿὸὶὥὭὲȟ 52.6% Disagree 
less steep than ὴ ὶὩὰȿὸὶὥὭὲȟ 8.6% Agree 

ὴ ὶὩὰȿὸὶὥὭὲȟ 
steeper than ὴὶὩὰȿὸὶὥὭὲȟ 29.8% Disagree 
less steep than ὴὶὩὰȿὸὶὥὭὲȟ 9.0% Agree 

 

 
Figure 4: Comparison of the optimal ranking functions for 
observed precision (top) and anti -precision (bottom) against 
their two main components: popularity (left) and the aver-
age rating (right). Each dot in the graphs is an item, and the 
values are computed on the MovieLens 1M rating data. Pear-
son correlation is shown for each graph. The ranking func-
tions of precision and anti -precision tend to grow and de-
crease, respectively, with popularity (left). The average rat-
ing component (right) has a rather negligible effe ct on the 
optimal ranking in comparison Ẩthe slight correlations are 
in fact a transitive effect of the positive correlation between 
the average rating and popularity in MovieLens 1M.  
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Figure 3: Comparison of the popularity and average rating 
distributions over items in MovieLens 1M (le╩), and how 
this results in an opposing trend between the optimal rank-
ings for observed precision and anti-precision (right). █e 
curves in the le╩ graph are sorted in decreasing order of 
▬◄►╪░▪ȿ░  and ▬►▄■ȿ◄►╪░▪ȟ░  respectively (hence the ●  axis 
is ordered di erently for each curve). Each dot in the right 
plot is an item, and its coordinates re ect its rank in the 
corresponding optimal ranking. █e Kendall   correlation 
between the rankings is shown.  
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5 Empirical Observations 
We run experiments in order to check and illustrate to what extent 
and how faithfully our theoretical results are observed in experi-
ments with real data, exposed to empirical variance and the poten-
tial violation of our theoretical simplifications. Also, while our 
analysis was in terms of optimal rankings, we aim to examine how 
this generalizes to the comparison of rankings other than the op-
timal, as can be returned by common recommendation algorithms. 
On the other hand, we seek to observe whether either false or true-
positive metrics are more robust than the other to evaluation bi-
ases, by checking their degree of agreement with unbiased esti-
mates of the corresponding true metric values. 

5.1 Data 
In addition to MovieLens 1M [31], which we used in previous sec-
tions, we shall use the Yahoo! R3 [30] and CM100k [7] datasets, 
which provide relevance judgments sampled uniformly at random, 
thus enabling unbiased estimates of true metric values. The details 
of the datasets are shown in Table 2. 

The Yahoo! R3 data includes a training set that was collected 
from spontaneous user interaction with music in the Yahoo! 
LaunchCast streaming service (hence training data are MNAR); 
and a test set containing ratings that each user was asked to enter 
for ten items sampled uniformly at random [30] (hence test ratings 
are MAR ỡmissing at random). Metrics computed on this data con-
figuration are thus unbiased estimates of the values that would be 
computed with a full rating matrix (i.e. the Ừtrueừ metric values). 
We can also reproduce typical biased measurements (Ừobservedừ 
metric values such as 0 and ÁÎÔÉ0) in this dataset by splitting the 
training set uniformly at random into a training and a test subset 
ỡin such a way that test ratings are MNAR. 

The CM100k data includes about 100 ratings per user for music 
selected uniformly at random. As a test set, we uniformly sample 
20% of this data, thus obtaining MAR relevance judgments for un-
biased estimation of true metric values. However, the remaining 
subset for training is also MAR. In order to reproduce MNAR input 
data as in real recommendation settings, we use information avail-
able in this dataset about whether users were familiar with the 
music or not before being surveyed, as in [7]: we take as training 
data only the non-test ratings for music that users had already 
heard before, as a proxy for spontaneous user-item interaction. On 
the other hand, in order to reproduce the computation of biased 
(observed) metric values, we simply take the set of all ratings for 
familiar music as a MNAR dataset, which we randomly split into 
training and (MNAR) test subsets. 

In all three datasets, for observed metric value computation, the 
split ratio of the MNAR data is 80% ratings for training and 20% 
for testing, under 5-fold cross-validation. We binarize rating val-
ues based on a minimum relevance threshold value, which is 4 on 
MovieLens and Yahoo! R3, and 3 on CM100k. 

5.2 Algorithms 
The particular choice of recommender systems for our experiments 
is not a critical point: we just need a representative set of well-be-
haved state-of-the-art algorithms. For this purpose we select sev-
eral collaborative filtering algorithms implemented in the LibRec 
library [21]: user-based and item-based kNN with cosine similarity 

[33], BPoissMF [20] (BPMF in the figures), EALS [22], GBPR [36], 
ListRankMF [43] (LRMF), PNMF [52], GPLSA [24], RankSGD [26] 
(RSGD), SLIM [34], SVD++ [28], WBPR [18], and WRMF [25]. Since 
the optimality of algorithms is not the object of our analysis here, 
we simply take the default configuration of these algorithms in the 
LibRec library, which achieves a reasonable performance in most 
cases. Some of them do nonetheless underperform, and they are 
useful in our experiments as well: it is as important for an evalua-
tion methodology to properly identify poorly performing systems 
as it is to single out the most effective ones. The potential metric 
distortions we are studying here concern, for instance, the early 
stages of parameter tuning ỡfrom a suboptimal starting pointỡ as 
much as the comparison of highly optimized algorithms.  

In addition, we include three non-personalized recommenda-
tions: ranking by decreasing popularity (Pop), by decreasing aver-
age rating (Avg) with Dirichlet smoothing ‘ ρ [7], and random 
(Rnd). Finally, whenever useful, we will include non-personalized 
versions of the optimal rankings for true or observed metric values 
as defined by equations 1 to 4. For true metric values, the optimal 
ranking function (equation 1) is given Ừoracleừ access to test data 
in order to estimate ὴὶὩὰȿὸὶὥὭὲȟὭ. 

5.3 Observed Metric Disagreements 
Figure 5a quite clearly confirms the contradiction between the ob-
served values of precision and anti-precision. This goes beyond 
our analysis in terms of optimal rankings: a distinct positive cor-
relation is displayed between both metrics in all three datasets, 
meaning that observed precision and anti-precision disagree in 
more pairwise system comparisons than those upon which they 
agree. The observations we find here would correspond to our toy 
example #1 in Figure 2: though we omit further graphs in the in-
terest of space, it is easy to check that the popularity is steeper 
than the average rating in all three datasets, and correlates posi-
tively with the average rating for most item pairs (two reasons for 
the observed value of metrics to disagree). 

The behavior of the metrics in terms of optimality can thus pro-
vide an explanation for their observed overall contradicting trend 
in system comparisons. In particular, we thus find that: 

Conclusion  4 ỡ Observed precision and anti-precision tend to disa-
gree with each other in the comparison between systems (not just in 
optimal rankings) in offline experiments with common datasets. Only 
if the popularity distribution were unusually flat the metrics would 
come to an agreeing trend. 

We also find validation for our formulation of the optimal rank-
ings, which are confirmed as bounds of non-personalized algo-
rithms for the respective metric (the optimal ranking for ÁÎÔÉ0 in 
the ὼ axis and the optimal for 0 in the ώ axis). We confirm that the 
optimal recommendation in each metric is worst ỡor nearlyỡ for 
the other metric. We further see that popularity is very close to 

Table 2: Details of the datasets. 

Dataset #Users #Items #Ratings   

MovieLens 1M 6,040 3,706 1,000,209  

Yahoo! R3 5,400 1,000 183,179 = 129,179 train + 54,000 test 
CM100k 1,054 1,084 103,584 = 11,594 on familiar music 

+ 91,990 on unfamiliar music 

 



  
 

 

 

the optimal ranking for 0, and is therefore among the worst rec-
ommendations in ÁÎÔÉ0, as predicted in Section 4.3 (Conclusion #2).  

We can realize in the figure that personalized algorithms can 
do better than the non-personalized optimal, also as one might ex-
pect (except in CM100k where collaborative filtering fails to im-
prove over popularity due to data sparsity, as reported in [8]). We 

nonetheless see that the disagreement between the two metrics 
generalizes to non-personalized algorithms: for instance, while 
WRMF is the best system in observed precision in Yahoo! R3, it 
appears to be the second worst in observed anti-precision. 

5.4 True Metric Agreement 
We now take a look at the true metric values, using the two da-
tasets that support unbiased metric estimates: Yahoo! R3 and 
CM100k, as explained in Section 5.1. Figure 5b shows the results. 
We see that the negative correlation between true precision and 
anti-precision is quite strong ỡi.e. they highly agree in ranking 
systems. This is a manifestation of our analytical result in Conclu-
sion #1, where now we see that the exact coincidence of the opti-
mal rankings for precision and anti-precision generalizes to a  
ỡnot exact butỡ strong agreement between the two metrics in 
comparing any two systems other than the optimals: 

Conclusion  5 ỡ True precision and anti-precision tend to agree with 
each other in the comparison between systems (not just in optimal 
rankings) in offline experiments with unbiased test data. Based on 
the theoretical analysis, we may expect this to be independent from 
the shape of the popularity distribution. 

We thus empirically confirm that we can expect agreement be-
tween true precision and anti-precision (Figure 5b), and disagree-
ment between their observed values (Figure 5a). However, the for-
mal analysis does not establish which metric should agree or not 
with its true value ỡboth situations are theoretically possible. We 
analyze this question empirically by plotting the true and observed 
values of each metric against each other in Figure 6. We see that 
while the MNAR measurements of precision are quite consistent 
with the unbiased MAR estimates, anti-precision seems to suffer 
from a severe distortion by the MNAR bias, to the point that the 
system comparisons are almost reversed. As an illustration of how 
our analysis generalizes to other false-positive metrics, the figure 
shows similar relations for fallout vs. recall in CM100k. We can 
see that the patterns are quite equivalent ỡthis is just one example, 
and analogous observations are also obtained for any of the com-
parisons shown in all previous figures. 
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Figure 6: Agreement and disagreement between observed 
and true values of true and false-positive metrics on Yahoo! 
R3 and CM100k. Kendall Ⱳ correlation of the system rank-
ings is shown in the graphs. 
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Figure 5: Regular evaluation of true and false -positive metrics on MNAR data (left) and true metric values bases on unbiased 
MAR test data (right). The optimal recommendations for precision and anti -precision are shown as a green and red dot, respec-
tively. The optim als for true metric values are the same on the right graphs (as per Conclusion #1), displayed as a unique red 
dot. Kendall Ⱳ correlation of the system rankings is shown in each graph. The respective relevance judgment coverage ratios at 
cutoff 10 for obse rved metric values (left) are 15.97%, 5.43% and 1.10% (average across systems) for MovieLens 1M, Yahoo! R3 and 
CM100k, respectively. For true metric values (right), it is 1.23% and 1.83% for Yahoo! R3 and CM100k respectively. 






