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ABSTRACT

Sales diversity is considered a key feature of Recommender
Systems from a business perspective. Sales diversity is also
linked with the long-tail novelty of recommendations, a qual-
ity dimension from the user perspective. We explore the
inversion of the recommendation task as a means to en-
hance sales diversity – and indirectly novelty – by selecting
which users an item should be recommended to instead of
the other way around. We address the inverted task by two
approaches: a) inverting the rating matrix, and b) defining
a probabilistic reformulation which isolates the popularity
component of arbitrary recommendation algorithms. We
find that the first approach gives rise to interesting refor-
mulations of nearest-neighbor algorithms, which essentially
introduce a new neighbor selection policy. The second ap-
proach, as well as the first, ultimately result in substantial
sales diversity enhancements, and improved trade-offs with
recommendation precision and novelty. Two experiments
on movie and music recommendation datasets show the ef-
fectiveness of the resulting approach, even when compared
to direct optimization approaches of the target metrics pro-
posed in prior work.
Categories and subject descriptors: H3.3 [Information Search
& Retrieval]: Information Filtering

Keywords: Recommender Systems; Sales Diversity; Novelty

1. INTRODUCTION
Sales diversity has been pointed out as a relevant quality of

recommendation from the business point of view [7]. Sales
diversity means that all or most products in the business
catalog get purchased to some extent, rather than having
sales concentrating around a few items. Sales diversity gets
meaning in the context of recommendation in the sense that
recommending a product exposes it to being sold. By link-
ing recommendation to purchase in the analysis of diversity,
“sales diversity” becomes a shorthand for “promoting sales
diversity”.

Sales diversity can be measured, for instance, by the total
number or the ratio of items that are recommended in the
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top-N to at least one user [1]. Better yet, we can use the Gini
coefficient as a finer measure of the concentration of top N

recommendations around a few items [7]. Prior research has
found there is an indirect connection between sales diversity
and selling (recommending) in the long tail [1]: promoting
long-tail (novel) items has a positive effect on sales diversity,
even though sales diversity and long-tail novelty are not in
themselves the same thing. Several approaches have been
proposed in the literature to enhance recommendations over
such metrics, most of which consist of re-sorting the top-K
items (K > N) of an initial ranking produced by a base-
line recommendation algorithm [1, 17]. Other authors have
also researched the effect of different basic recommendation
methods on sales concentration [7].

In the research presented here, we consider a different out-
look on the problem of sales diversity. If we aim to pro-
cure a fair opportunity for most items to be recommended,
one may consider selecting which users each item should be
recommended to, instead of the other way around. This
view entails a symmetric swap of the recommendation task,
whereby users are recommended to items rather than the
opposite. From this perspective, we address three main re-
search questions: a) How can we define suitable and effec-
tive algorithms that recommend users to items? b) Does
the inverted formulation actually enable any improvements
in sales diversity? c) If so, what trade-offs if any are in-
volved with respect to other qualities such as precision or
recommendation novelty from the user point of view?

To address these questions we propose, firstly, to explore
the application of state of the art collaborative filtering algo-
rithms to the inverted recommendation task, that is, simply
swapping the role of items and users in the algorithms. We
find interesting derivations, equivalences, and new insights
on the behavior of neighborhood-based algorithms in partic-
ular, where the inversion results in the emergence of new
neighbor selection policies, with an impact on the poten-
tial connections to item popularity. We furthermore find
that the inversion approach results in a significant increase
of sales diversity while retaining a good trade-off on top-
N item recommendation precision. In addition to this, we
develop a probabilistic scheme which formulates user recom-
mendation to items as a Bayesian layer which can be applied
on top of any recommendation algorithm. The probabilistic
scheme provides a principled means to isolate the item pop-
ularity component of the baseline algorithm; by means of
simple smoothing techniques, the presence of this popular-
ity component can be calibrated (i.e. kept unchanged or
neutralized) to any desired degree. This parametrization is
shown to enable an enhanced precision-diversity trade-off,



even above, somewhat surprisingly, direct optimization ap-
proaches targeting the precision vs. long-tail novelty trade-
off. Furthermore, the resulting algorithmic scheme is com-
petitive with respect to direct optimization even in terms of
long-tail novelty.

The rest of the paper is structured as follows. In Section 2
we review the related work on assessment and enhancement
of sales diversity and novelty. Section 3 discusses the pop-
ularity bias in collaborative filtering algorithms detected by
several authors, and how this bias also influences the evalu-
ation of Recommender Systems in ranking tasks. Section 4
introduces the inverted recommendation task of recommend-
ing users to items. Then, Section 5 describes our first pro-
posal of using inverted neighborhoods to improve sales diver-
sity. An analysis of the properties of standard and inverted
neighborhoods and their differences is shown in Section 6.
Section 7 presents our second proposal, a probabilistic re-
formulation layer that allows the calibration of the popular-
ity bias in state-of-the-art collaborative filtering algorithms.
Experiments with two different recommendation scenarios
– movies and music – are described in Section 8. Finally,
Section 9 offers the conclusions and future work.

2. SALES DIVERSITY AND NOVELTY
As Anderson [4] stated, some businesses or economic mod-

els present a Long tail effect, in which a few of the most pop-
ular items are extremely popular, while the rest – the long
tail – is much less known. Promoting the recommendation
of items in this long tail may offer benefits for both users and
the business behind the recommender system. From the user
side, offering not so popular items may help receive less ob-
vious, unexpected recommendations, which correspond with
the natural notion of a recommender system as a tool to help
users discover new content. From the system side, avoiding
the recommendation of short-head items may also contribute
to make the most of the catalog.

Adomavicius et al. [1] proposed to measure sales diversity
in terms of the aggregate diversity, i.e., how many different
items of the catalog were recommended to the users. Given
a recommender system S, they proposed a metric, denoted
here as aggr-div, which return the total number of different
items that have been recommended to at least one user:

aggr-div(S) =
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where LS
u is the recommendation list generated by the sys-

tem S for the user u. This metric, while being simple and
intuitive, may not be very robust, since the contribution
to the metric of an item that has been recommended just
once is equal to that of other item recommended a thousand
times. Therefore, we think that using a metric to measure
the imbalance in the number of times each item is recom-
mended would be more adequate. Fleder and Hosanagar [7]
proposed a better alternative by using the Gini coefficient

to measure sales concentration:

gini(S) = 1−
1

N − 1

N
∑

k=1

(2k −N − 1)p(ik |S) (2)

where p(ik |S) is the probability of the k-th least recom-
mended item being drawn from the recommendation lists
generated by a system S:

p(i |S) =

∑

u
1i∈LS

u
∑

u,j
1j∈LS

u

(3)

Note that in our definition we use the complement of the
standard definition for the Gini coefficient so that higher
values of our metric correspond to more balanced recom-
mendations.

In previous work [17], we proposed the expected popular-

ity complement metric to measure the long-tail novelty of
the items in a recommendation list, which is defined as the
average novelty of the recommended items:

EPC(Lu) =
1

|Lu|

∑

i∈Lu

nov(i) (4)

where nov(i) measures the novelty of an item as the proba-
bility of not to being known by a user:

nov(i) = 1−

∑

u
1ru,i>0

∑

u,j 1ru,j>0
(5)

Several proposals to promote sales diversity and novelty
in recommender systems have been proposed [1, 11, 15, 17].
A simple approach, which we compare against our proposals,
consist in a re-scoring of a previously generated recommen-
dation baseline by using a normalized linear combination
between the scores provided by the baseline and the novelty
component described in 5:

sNR(u, i) = (1− λ) norms s(u, i) + λ normnov nov(i) (6)

where norms and normnov are normalizing functions that
help making a balanced combination of both relevance and
novelty components, such as the standard score normX(x) =
x−µX

σX
.

3. THE POPULARITY BIAS IN

RECOMMENDATIONS
In a ranking prediction task, the popularity-based recom-

mendation is the obvious baseline to beat [3]. In terms of
sales diversity and recommendation novelty, personalized al-
gorithms easily improve over the popularity-based recom-
mendation which, by definition, has the lowest scores in
terms of the metrics described in the previous section. Im-
proving the precision of popularity recommendation is less
obvious than one might think but is also a feasible goal [6].
While it is clear that collaborative filtering algorithms out-
perform popularity-based recommendations in terms of ac-
curacy and sales diversity, some authors have pointed out
that they still suffer from a bias [18].

Collaborative filtering algorithms, in particular, are known
to generally have a bias towards recommending popular items,
commonly known as the “Harry Potter Effect”1. There is a
natural reason for this trend to begin with: collaborative
filtering thrives on the populated regions of the user-item in-
teraction history matrix (rating matrix for short), and falls
short in the sparser regions. Popular items live by defini-
tion in the more populated areas, since they carry more
rating data that populates matrix cells, and collaborative
algorithms are therefore more prone to end up recommend-
ing these items. The popularity bias of collaborative filtering
algorithms has been pointed out by several authors and stud-
ied by some. For instance, Zhao et al. [18] show empirical
evidence that popular items tend to be more recommended
than not so popular ones, and proposes methods to alleviate
his effect. Steck [15] examined this issue in further depth and
justified this popularity bias by the selection bias towards
popular items in the available data.

1http://recsyswiki.com/wiki/Harry_Potter_effect
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Furthermore, common precision-based evaluation method-
ologies reward this behavior, since popular items have more
test ratings and are more likely to be counted as hits for more
users. This has motivated several evaluation protocols [5, 6,
15] that try to enable a less biased assessment of the person-
alized relevance of the recommendations, by removing the
tip of the bias in the test data.

The popularity bias has a negative effect on the discovery-
related added value and practical usefulness of collaborative
filtering recommendations, as well as their effect on sales
concentration [7]. The research and findings we report here
provide means to better cope, directly and indirectly, with
this bias, as we discuss in the next sections.

4. RECOMMENDING USERS TO ITEMS:

PROBLEM STATEMENT
The recommendation task can be formulated as defining a

scoring function s : U ×I → R for pairs of users u ∈ U and
items i ∈ I so that, for each user, a ranked list of items Lu ⊂
I × I × . . . is defined by sorting items by decreasing score
order. The scoring function of a recommender algorithm
is based on previous interactions between users and items
recorded in a matrix R = (ru,i)u,i ∈ R

|U|,|I| and, possibly,
additional sources, as in the case of content or social-based
recommenders. We shall focus here on collaborative filtering
approaches, which use only the interaction matrix R.

Analogously to the original task of recommending items
to users, the task of recommending users to items can be
formulated as defining a scoring function

s̃ : I × U → R (7)

which induces a ranking of users by their decreasing pre-
dicted relevance to item i. In a pure collaborative filtering
setting, the input data for this task consists of the trans-
posed rating matrix R̃ = Rt ∈ R

|I|,|U|.
Since collaborative filtering algorithms do not depend on

the content or internal characteristics of both users and
items, they can be adapted for this task without any mod-
ification apart from the change of roles between users and
items. An initial observation is that, for many popular, state-
of-the-art collaborative filtering algorithms, the scoring func-
tion s̃ is actually identical to that of the original problem s.
That is the case, for instance, of many matrix factorization
approaches, such as the implicit matrix factorization of Hu
et al. [9]:

s̃iMF (i, u) = qi p
t
u = pu q

t
i = siMF (u, i) (8)

There are other collaborative filtering approaches that break
this symmetry. That is the case of other matrix factorization
approaches [13, 14, 16] which, even having the same scoring
function as in Equation 8, have non-interchangeable roles
for users and items in their model training, and thus pro-
vide new scoring functions between users and items. How-
ever, we focus on the case of nearest neighbors approaches,
whose asymmetry offers an interesting, new alternative for
generating diverse recommendations.

5. INVERTED NEAREST NEIGHBORS
A first application of the inverted recommendation task

lies in the asymmetry of the nearest neighbor approaches
when applied to the inverted recommendation task. Through-
out this section we will focus on the user-based k-nearest
neighbors (kNN) approach, since most of the observations,
unless explicitly discussed, are straightforwardly translat-
able to the item-based alternative.

sim u1 u2 u3 u4

u1 - 0.1 0.3 0.4
u2 0.1 - 0.5 0.0
u3 0.3 0.5 - 0.6
u4 0.4 0.0 0.6 -

u N2(u) N
−1
2 (u)

u1 {u3, u4} {u2, u4}
u2 {u1, u3} {u3}
u3 {u2, u4} {u1, u2, u4}
u4 {u1, u3} {u1, u3}

Table 1: Example of user neighborhoods of size 2.

The scoring functions of the user-based and item-based
kNN recommenders[2, 6] can be formulated as follows :

sUB(u, i) =
∑

v∈U

1v∈N(u) sim(u, v) rv,i (9)

sIB(u, i) =
∑

j∈Iu

1i∈N(j) sim(i, j) ru,j (10)

where sim(u, v) is a similarity function between two users
and N(u) is the neighborhood of user u, containing the top-
most similar users to item u.

Reformulating these algorithms in the inverted recommen-
dation task, the scoring functions become:

s̃UB(i, u) =
∑

j∈I

1j∈N(i) sim(i, j) r̃j,u (11)

s̃IB(i, u) =
∑

v∈Ui

1u∈N(v) sim(u, v) r̃i,v (12)

As previously commented, the symmetry of the nearest neigh-
bors scoring functions with respect to the original problem is
broken. In particular, the user-based approach sUB in Equa-
tion 9 is notably different from the scoring function s̃UB in
Equation 11. Interestingly, it is almost equivalent to the
item-based approach s̃IB for the inverted recommendation
in Equation 12, the difference lying on the neighborhood se-
lection criterion, i.e., 1u∈N(v) against 1v∈N(u). Actually, one
can re-formulate the scoring function s̃IB as a variant of the
standard user-based approach sUB in which the policy for
neighbor selection is inverted, that is, by considering user
inverted neighborhoods N−1(u) defined as

N
−1(u) = {v ∈ U : u ∈ N(v)} (13)

where N(v) is the original neighborhood for a user v, so
that 1u∈N(v) = 1v∈N−1(u). The concept of inverted neigh-
borhoods originally appeared in [12], where it was proposed
as an ad-hoc method to efficiently predict ratings for item-
based approaches, without any relationship with the inverted
recommendation tasks or the improvement of sales diversity.

Note what the resulting inverted neighborhood formation
policy means: instead of selecting N(u) as the top-K most
similar users to the target user u, all the users v for which
the target user is among the K most similar to v are se-
lected as the neighbors N−1(u) of u. Table 1 shows an
example of a community of users and their corresponding
standard and inverted neighborhoods for K = 2. This has
several consequences. In the first place, the resulting, in-
verted neighborhoods no longer have all the same size. The
size of the inverted neighborhood of a user u is the number
of users to whose neighborhood u belongs – in particular
this means that some users might have an empty neighbor-
hood at the cost of user coverage of the recommendation,
but we have observed in our experiments that this situation
does not happen in practice if the original neighborhoods
are large enough. Having different neighborhood sizes is not
necessarily a drawback, on the contrary, it may be favorable
that users have as large a neighborhood as the reliability of
the available data for each user enables.



user item

Netflix 209.25 5,654.50
MSD 043.03 0,127.88

Table 2: Average profile size

user-based item-based

S avg
u

avg
v∈N(u)

|Iv| avg
i

avg
j∈N(i)

|Uj|

G Gini(|N−1(u)|) Gini(|N−1(i)|)
C ρ(|Iu|, |N

−1(u)|) ρ(|Ui|, |N
−1(i)|)

Table 3: Definition of the neighborhood properties.

N denotes in this case a generic user or item neigh-

borhood, either standard or inverted.

The inverted neighborhoods approach implies, on the other
hand, that all users will appear in exactly the same number
|N(u)| of inverted neighborhoods (except perhaps a few low
activity users for which it was not possible to form a direct
neighborhood of size K in the first place). This flattens the
influence power of all users, so that all users’ opinions“count”
to the same extent overall in the produced recommendations.
This may be expected to avoid a concentration of recommen-
dations over the tastes of a reduced set of users, thereby in-
directly enhancing a more even distribution of items across
recommendations to the user population.

In the case of the item-based variant this effect is even
more direct: if all items appear in the inverted neighbor-
hood of the same number of items (neighbor items being
the candidates for recommendation in the item-based kNN
method), they will have more even chances of making it to
the top-N of recommendations, whereby one may expect
better distributed recommendations over the set of items
(i.e. more diverse “sales”). Moreover, long-tail items, by
getting a more equal opportunity to be recommended with
respect to popular items, might make for a long-tail novelty
enhancement of recommendations.

In order to have a preliminary understanding of these
potential effects, we will analyze more closely in the next
section the relation between user and item characteristics,
namely profile size, and their distribution across neighbor-
hoods for the direct and inverted selection policies. Our
discussion of the potential effects on final recommendation
diversity is so far speculative and needs to be tested empiri-
cally, as we report in Section 8.2.

6. NEIGHBORHOOD BIAS ANALYSIS
We test and illustrate the biases suggested in the previous

section by taking some measurements on data from the Net-
flix Prize and the Million Song Dataset, for which we study
the characteristics of user and item neighborhoods with dif-
ferent neighborhood sizes K.

We show in Table 4 the following measurements:
• Average profile size of the neighbors (S), in order to

detect any possible bias towards neighbors with profile
sizes significantly different from the average profile size
(displayed in Table 2).

• Gini coefficient of the items distribution across neigh-
borhoods (G), as an indicator to detect any imbalance
in the distribution of the number |N−1

K (u)| of neigh-
borhoods a user belongs to.

• Correlation between the profile size of a user and the
number of neighborhoods she belongs to (C), to see if

S G C

K NK N
−1
K

NK N
−1
K

NK N
−1
K

N
e
t
fl
ix

10 286.39 137.91 0.18 1.00 0.07 -
20 291.07 131.91 0.20 1.00 0.09 -
50 298.20 124.68 0.22 1.00 0.11 0.00

100 304.38 120.08 0.25 1.00 0.12 0.00
200 311.24 116.46 0.27 1.00 0.15 0.00
500 321.53 113.25 0.30 1.00 0.18 0.01

1000 330.29 111.58 0.33 1.00 0.22 0.01
2000 339.96 110.41 0.35 1.00 0.26 0.02
5000 353.90 110.12 0.21 1.00 0.32 0.02

M
S
D

10 23.12 35.41 0.18 1.00 -0.11 0.00
20 24.29 35.58 0.21 1.00 -0.11 0.00
50 26.27 35.96 0.26 1.00 -0.12 0.00

100 28.07 36.41 0.30 1.00 -0.12 0.00
200 30.06 37.07 0.34 1.00 -0.12 0.01
500 32.75 38.63 0.40 1.00 -0.11 0.01

Table 4: Properties of user neighborhoods with

cosine similarity for the Netflix and Million Song

datasets. Dashes mark undefined correlations since

|N−1(u)| was constant for all the users. See Table 3

for the meaning of S, G and C.

S G C

K NK N
−1
K

NK N
−1
K

NK N
−1
K

N
e
t
fl
ix

10 24,018.26 08,622.86 0.48 1.00 0.22 -
20 25,484.00 07,888.98 0.49 1.00 0.28 -
50 27,674.89 07,208.90 0.50 1.00 0.37 -

100 29,497.64 06,824.87 0.50 1.00 0.44 -
200 31,272.44 06,513.84 0.51 1.00 0.50 -
500 32,565.92 06,525.21 0.51 1.00 0.56 -

1000 30,964.19 07,301.09 0.54 1.00 0.57 -
2000 26,208.78 09,150.45 0.62 1.00 0.53 0.01
5000 17,001.67 12,839.88 0.80 1.00 0.26 0.01

M
S
D

10 0,146.76 120.09 0.60 1.00 0.02 0.00
20 0,176.99 114.08 0.64 1.00 0.05 0.01
50 0,248.41 108.56 0.67 0.99 0.12 0.02

100 0,344.79 106.58 0.70 0.97 0.23 0.04
200 0,497.18 116.77 0.70 0.94 0.42 0.05
500 0,822.14 158.30 0.62 0.86 0.64 0.08

1000 1,147.84 216.59 0.53 0.78 0.71 0.11
2000 1,475.06 302.41 0.45 0.67 0.75 0.15
5000 1,793.47 462.71 0.37 0.52 0.76 0.21

Table 5: Properties of item neighborhoods for the

Netflix and Million Song datasets. Dashes mark un-

defined correlations since |N−1(i)| was constant for

all the items. See Table 3 for the meaning of S, G

and C.

an existing imbalance is caused for a bias to users with
big profiles in the neighbor selection process.

A more formal definition of the above measurements is given
in Table 3, where we denote by NK(u) the direct neighbor-
hood formed by the K most similar users to a user u, and
by N−1

K (u) the inverted neighborhood for u.
The results in Table 4 reveal, as hypothesized, biases and

concentrations in the selection of user for standard neighbor-
hoods. In the case of Netflix data, the standard neighbor-
hood method is slightly biased towards selecting users with
big profiles and shows a clear concentration on a small sub-
set of users. In the case of the Million Song Dataset, there
is an opposite bias towards small profiles, which also causes
a concentration of neighbors. A possible explanation of why
these methods differ in the direction of the bias may lie in
the incomparable number of items between them and the
different levels of sparsity in each dataset. In any case, the
inverted selections strategy corrects this biases, that is, elim-



inates the correlation between profile size and the number
of neighborhoods a user belongs to and, at the same time,
creates a perfectly balanced distribution of this number.

Table 5 shows the equivalent measurements for item neigh-
borhoods. Again, we can observe biases and concentration
in the direct selection method that are partly solved by the
inverted neighborhoods. The Netflix data shows a bias to-
wards popular items that, ultimately, compose the majority
of the neighborhoods. These issues are solved by the in-
verted item neighborhoods, which achieve a perfectly equi-
tative distribution of the items in the neighborhoods, doing
away with the bias towards popular items. In the Million
Song dataset, a bias towards popular items is also observed
for large neighborhood sizes, and an uneven distribution of
the items in the distribution is observed for all neighborhood
sizes. Again, inverted neighborhoods help solving these ef-
fects by significantly reducing the bias towards popular items
and achieving more uniform distributions in the number of
neighborhoods each item belongs to.

7. PROBABILISTIC REFORMULATION

LAYER
The inverted recommendation task can also be addressed

in probabilistic terms. Probabilistic formulations have been
used extensively in the conventional item recommendation
task as a means to develop collaborative filtering methods.
For instance, Hofmann [8] proposed ranking items by the
decreasing probability p(i|u) that the target user would pre-
fer each item over the others. This principle is developed
by means of an adaptation of the probabilistic Latent se-
mantic Indexing (pLSA) framework into an effective scoring
procedure for producing ranked recommendations.

Turning the task around, recommending users for items
would consist of estimating p(u|i) for each user u given an
item i. A straightforward way of linking any recommenda-
tion algorithm to a probabilistic formulation can be estab-
lished by assuming that the recommender scoring function
s(u, i) is roughly proportional to p(u, i). This assumption,
coarse as it may be, provides a very direct means to bring the
recommendation algorithm to a probabilistic interpretation
as per:

p(u | i; s) ∼
s(u, i)

∑

v
s(v, i)

(14)

We can therefore use this approach to obtain an inverted
recommendation method out of any direct item recommen-
dation algorithm. Note that the resulting formulation pro-
duces a totally equivalent output as its scoring function pre-
serves the original ranking, i.e., p(u | i; s) ∝ s(u, i). The for-
mulation is however useful as it enables a probability-based
manipulation of the popularity bias in recommendation al-
gorithms, as we see next.

First, the resulting output of the inverted recommenda-
tion should be reverted to a list of ranked items to be deliv-
ered to each user. A principled way to do this is by applying
Bayesian inversion on p(u|i), thereby obtaining an estimate
for p(i|u) as a suitable scoring function for ranking items for
each user:

p(i |u; s) =
p(u | i; s) p(i; s)

∑

j
p(u | j; s) p(j; s)

(15)

where the prior p(i; s) represents how likely the item is to
be the favorite of a random user.

UB IB iMF

Netflix 0.99 0.73 0.95
MSD 0.92 0.78

Table 6: Pearson correlation between prior p(i; s, 0)
and item popularity.

Note that we could instead have derived an estimate of
p(i |u; s) by an equivalent symmetric version of equation 14.
However, the advantage of equation 15 is that it explicitly
reflects the popularity component carried by the item prior
p(i; s). Using the same assumption as before between the
scoring function and probabilities, we have:

p(i; s) ∼

∑

u
s(u, i)

∑

j

∑

u s(u, j)
(16)

Now that the popularity component is isolated, we pro-
pose to smooth the prior estimate in a way that has it range
from the literal estimate based on the recommender’s scores,
to a flat uniform background prior where all items are con-
sidered equally popular. We do so by an entropic regulariza-
tion of the estimate – similar to the tempered expectation
maximization algorithm in [8], which simply introduces an
exponent in the expression:

p(i; s, α) ∼

(
∑

u s(u, i)
)1−α

∑

j

(
∑

u
s(u, j)

)1−α
(17)

In the above expression, the α ∈ [0, 1] smoothing parameter
allows controlling how much of the algorithm popularity bias
we wish to leave as is or remove.

Interestingly, by combining equations 15 and 17, the re-
sulting probabilistic interpretation p(i |u; s) can be simpli-
fied to a re-scoring procedure for a standard scoring function
s as follows:

sBR(u, i) = s(u, i)

(

∑

v

s(v, i)

)−α

(18)

This last reformulation allows to see more clearly the role of
the parameter α. On one hand, when α = 0 we obtain the
original recommendation list created with the scoring func-
tion. On the other hand, when α = 1 the prior is uniform
and thus the recommendations to users will be completely
based on p(u | i; s̃), eliminating any possible popularity bias
in the items. The use of intermediate values of α is a means
to provide more varied recommendation lists while retaining
an appropriate level of relevance, that is α is a parameter
that controls the relevance/novelty trade-off, only that nov-
elty is not applied as the opposite to popularity (as is the
case in most novelty enhancement approaches [1, 17]), but
rather as neutrality with respect to popularity.

To illustrate how we can control the popularity bias by the
proposed approach, we show in Table 6 the Pearson corre-
lation values between the priors p(i; s, 0) and the popularity
of the items (understood as the number of users who know –
i.e. have rated – the item) for some recommendations base-
lines – further detailed in Section 8.1 – for the Netflix and
Million Song datasets. The values reveal a strong correlation
between our score-based estimate of the item priors and the
actual popularity of the items. This, on the other hand, em-
pirically illustrates the popularity bias of these state of the
art algorithms as discussed in Section 3, and shows how the
prior component captures it, enabling its gradual adjustment
by the α parameter.
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Figure 1: Experiments with Inverted Neighborhoods

K UB (NK) UB (N−1
K

) IB (NK) IB (N−1
K

)

N
e
t
fl
ix

10 0.9893 0.6602 0.9989 0.9989
20 0.9961 0.7775 0.9989 0.9989
50 0.9989 0.8995 0.9989 0.9989

100 0.9989 0.9575 0.9989 0.9989
200 0.9989 0.9871 0.9989 0.9989
500 0.9989 0.9981 0.9989 0.9989

≥1000 0.9989 0.9989 0.9989 0.9989

M
S
D

10 1.0000 0.8291 1.0000 1.0000
20 1.0000 0.9178 1.0000 1.0000
50 1.0000 0.9830 1.0000 1.0000

100 1.0000 0.9980 1.0000 1.0000
200 1.0000 0.9999 1.0000 1.0000

≥500 1.0000 1.0000 1.0000 1.0000

Table 7: User coverage as the fraction of users in

the test split which receive a recommendation in the

Netflix and MSD data.

8. EXPERIMENTS
In order to test the effectiveness and analyze the prop-

erties of the proposed inverted nearest neighbor methods
and the probabilistic popularity adjustment, we carry out
two experiments on the Netflix Prize2 and Million Song
Dataset Challenge [10] datasets. The Netflix data contain
100M ratings (from one to five stars) by 480,000 users to
18,000 movies. And we used the Taste Profile Subset of the
Million Song Dataset, containing 48M play count triplets
by 1,100,000 users for 380,000 songs. As in the work of
Aiolli [2], we take binarized play counts since, as warned by
the challenge organizers, play counts are unreliable and not
necessarily correlate with likings.

8.1 Setup
Each dataset is split for evaluation into training and test

subsets. For Netflix, we do a 80-20% random split of the

2http://www.netflixprize.com/

P@10 EPC@10 gini@10 aggr-div@10

N
e
t
fl
ix

Random 0.0022 0.9866 0.9683 1.0000
Pop 0.1026 0.6920 0.0019 0.0100
iMF 0.2084 0.8401 0.0507 0.3571

UB (N100) 0.2396 0.7778 0.0183 0.2784

UB (N−1
100) 0.2053 0.8028 0.0858 0.9591

IB (N10) 0.1874 0.7681 0.0113 0.4691

IB (N−1
10 ) 0.2018 0.8115 0.0378 0.6738

M
S
D

Random 0.0000 0.9999 0.6750 0.9424
Pop 0.0306 0.9376 0.0000 0.0001

UB (N100) 0.1899 0.9814 0.0249 0.1634

UB (N−1
100) 0.1565 0.9908 0.0756 0.3119

IB (N10) 0.1924 0.9920 0.0776 0.3341

IB (N−1
10 ) 0.1965 0.9929 0.0839 0.3459

Table 8: Comparison of inverted neighborhood

methods to other recommendation algorithms.

data, while in the Million Song dataset we take the parti-
tion provided with the data release. For every user with
test data, we generate recommendation lists by ranking all
the items with training data. We then measure rank-based
precision, novelty and sales diversity for the top-10 items in
the recommendation for each user. Precision is measured as
the proportion of relevant test items of the user included in
the recommendation he is delivered. Novelty is measured
by EPC [17] and sales diversity by the Gini coefficient. For
illustrative purposes, we also report results for aggregate di-
versity [1] normalized by the number of items.

For the inverted neighborhood approach, we compare the
inverted kNN approaches described (Equations 11 and 12)
to the corresponding standard user-based and item-based
formulations (Equations 9 and 10). We used cosine as the
similarity function between users and items, and explored a
range of neighborhood sizes for both datasets.

http://www.netflixprize.com/
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Figure 2: Experiments with Bayes Rule

For the probabilistic reformulation, a comparison between
our approach and the novelty-oriented re-scoring approach
defined by Equation 6 in three different recommendation
baselines, namely the standard user and item-based kNN
recommenders (N100 and N10 respectively) and, for the case
of the Netflix dataset, the implicit matrix factorization pro-
posed by Hu et al. [9], by considering positive ratings as im-
plicit data. As stated in [2], matrix factorization approaches
are not effective in the Million Song dataset, as our attempts
at it confirmed, whereby we omit results with this baseline
in this dataset. The two compared approaches have a param-
eter that controls the trade-off between the original scoring
function (α = 0.0 and λ = 0.0) and a pure novelty compo-
nent (α = 1.0 and λ = 1.0). We explore these trade-offs by
a grid search on the full interval by steps of 0.1.

8.2 Results for Inverted Nearest Neighbors
Figure 1 shows the comparison of the direct (i.e. standard)

and inverted nearest-neighbor approaches in terms of the
metrics of interest for different neighborhood sizes.

The results confirm a systematic increase in sales diver-
sity (measured by the Gini coefficient), as hypothesized in
Section 5. The improvement is consistent in the user-based
and item-based versions for all neighborhood sizes on both
datasets. Notably moreover, for the item-based approach,
the inverted method offers better accuracy and novelty for
every value of K. For inverted user-based kNN, accuracy
and novelty are better than in direct kNN only for large
enough neighborhoods (K ≥ 100). This is caused by user
coverage degradation that occurs with smaller K, that is,
many users do not receive recommendations since their in-
verted neighborhoods are empty, resulting in a penalization
in metrics such as precision and EPC (we sum zero precision
and EPC when a user cannot be delivered a recommenda-
tion). The details about the user coverage degradation are
shown in Table 7. In a real recommender system this would
not be acceptable, and a fallback solution, such as using the
standard neighborhood, should be resorted to in those cases.
However, in this analysis we are interested in the properties
of the pure algorithm, and we therefore report the results
for a plain version of the approach.

In order to provide a wider perspective in the context of
alternative recommendation algorithms, Table 8 shows the

comparison of inverted kNN for K = 100 in user-based kNN
and K = 10 in item-based kNN with random, popularity-
based and matrix factorization recommendations. It can be
seen that the inverted kNN approaches obtain the best re-
sults – after random recommendation of course – in sales di-
versity and novelty. Random recommendation, as expected,
produces inaccurate but highly novel and diverse results
in both datasets. Popularity-based recommendation also
yields predictable outcomes, producing moderately accurate
results – depending on the sparsity of each dataset – and the
lowest possible novelty and sales diversity – which should be
so by definition. Matrix factorization (only tested on Netflix
for the aforementioned reasons) has good novelty and sales
diversity, outperforming the standard nearest neighborhoods
methods, but not the inverted variant.

8.3 Results for the Probabilistic Reformula-
tion

The results of our experiments with the Probabilistic Layer
approach are shown in Figure 2. For each dataset-baseline
pair we display two scatter plots showing the trade-offs be-
tween precision vs. novelty and sales diversity for the novelty-
oriented re-scoring technique (NR) and our probabilistic ap-
proach (BR). Curves for each approach start from α = λ =
0.0 as the points with the lowest novelty and diversity and,
as α and λ tend to 1.0, improve in terms of EPC and Gini
while – generally – having lower precision values. Assum-
ing that the interpolated lines are a good approximation to
the continuous range of the trade-off parameters, we deter-
mine that a method is better that the other if its curve is
generally above the other in each plot. Under this criterion,
the results in Figure 2 show the validity of our probabilistic
approach.

In the Netflix data, we can see how the compared ap-
proaches show practically identical trade-offs in terms on
EPC and, in terms of Gini, our probabilistic method clearly
outperforms the novelty-oriented re-ranking. Surprisingly,
the probabilistic approach outperforms the original scoring
function even in terms of precision and, among baselines, it
is the one that achieves the highest sales diversity scores. On
the other side, the improvements on the matrix factorization
approach, although being perceptible, are more limited that
those in the nearest neighbors recommenders.



In the Million Song dataset the results are analogous. Both
re-ranking approaches present similar outcomes in terms of
EPC, while the probabilistic approach clearly outperforms
the novelty-oriented re-ranking. Again, item-based kNN is
the baseline that enables a higher improvement in terms of
sales diversity.

In conclusion, the proposed probabilistic approach pro-
vides a new method for improving trade-offs between accu-
racy, novelty and sales diversity. Compared to a simpler
approach that optimizes directly the long-tail novelty of rec-
ommendations, our proposal obtains comparable results in
terms of the novelty of recommendations, while it shows
clearly better results in terms of sales diversity.

9. CONCLUSIONS AND FUTURE WORK
Starting from the aim of improving sales diversity by rec-

ommendation, we explore in this paper where the inversion
of the recommendation task leads to. By ranking users for
items, the recommendation approach focuses on the rele-
vance of user-item pairs in a different way, and item pop-
ularity gets left aside as a result. Starting from this task
inversion, we derive two approaches to improve the sales di-
versity of the original item recommendation task. The first
one, inverted neighborhoods, results in a novel way of “de-
mocratizing” the weight of user opinions (in the user-based
approach) and item opportunity (in the item-based variant),
leading to substantial improvements in terms of sales diver-
sity, competitive results in recommendation novelty and a
good precision trade-off. The second approach, a probabilis-
tic reformulation of the recommendation problem, allows
isolating the popularity component of any recommendation
baseline and calibrate it in order to increase the chances
of less popular items to appear in recommendations lists.
Experiments on two different datasets, namely Netflix for
movie recommendation and the Million Song Dataset for
music recommendation, confirm and illustrate the effective-
ness of our proposals.

The symmetric inversion of the recommendation task en-
tails more than a simple transposition of the rating matrix.
It brings up a new view on the task where the system seeks
the most appropriate users to whom an item can be recom-
mended, even though the final action is still the delivery of
a ranked list of items to each user. This problem statement
can reflect real-world situations where a business is selecting
targets for advertising a particular product.

As future work, we envisage deeper studies on the prop-
erties of neighborhoods we examined in Section 6 with ad-
ditional metrics in order to uncover further potential biases
in user and item neighborhoods. We also envision further
improvements of the Bayesian reformulation. In particular,
we intend to explore increasing the exclusivity of items, that
is, recommending each item to only a limited selection of
users. In our probabilistic scheme, this exclusivity could be
carried out by re-defining the likelihood component p(u | i; s)
in Equation 14, for instance by creating a cut-off of the users
with highest scores for item i or by means of parametrization
similar to the one of the prior in Equation 17.
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