Novelty and Diversity Enhancement and Evaluation in Recommender Systems and Information Retrieval

Saúl Vargas
Universidad Autónoma de Madrid
saul.vargas@uam.es
About me

• PhD student and Teaching Assistant at Universidad Autónoma de Madrid (Spain).

• Supervised by Professor Pablo Castells.

• In 2012 I presented my Master Thesis, which started this doctoral research.
Recommender Systems (1/2)

You may also like...

Recommendation
Recommender Systems (2/2)

- Personalized Information Retrieval Systems.
- No query, information need is implicit:
 - “I would like to listen to (new) music.”
 - “I would like to watch a movie.”
 - “What products would I be interested in buying?”
- Previous interactions as indicator of user preferences.
Diversity and Novelty in Recommendations

You bought:

- Revolver
- Abbey Road

Recommendations:

- Rubber Soul
- With The Beatles
- Beatles for Sale
- Let it be
- Help!
- A Hard Day's Night
- Sgt. Pp's Lonely Hearts Club Band
- Yellow Submarine
- Magical Mystery Tour
- Past Masters
- Past Masters Vol 2
- Please Please me
- 1967-1970 (Blue)
- 1962-1966 (Red)
- Dark Side of the Moon
- Some Girls
- Bob Dylan

…
State of the Art

“Each diversity or novelty paper in RS has its own definition, metrics and methods”

• Lack of formalization and standardization in Recommender System.

• There are few studies connecting Search Result Diversification with Diversity in Recommender Systems.
Research Methodology

● Comprehensive study of the State of the art for both IR and RS.
● Definition and formalization of tasks.
● Development of metrics and algorithms.
● Offline experiments:
 - Publicly available data sets:
 ● MovieLens1M (movies, 6K users, 4K items, 1M ratings).
 ● Netflix (movies, 480K users, 18K items, 100M ratings).
 ● MSD (music, 1M users, 380K items, 48M play counts).
● Online evaluation:
 - Crowdsourced evaluation (Crowdflower, Amazon Mechanical Turk)
Research Goals

- Unification and formalization of novelty and diversity metrics for Recommender Systems.
- Connection between principles in Search Result Diversification and Diversity in Recommender Systems.
- New novelty and diversity enhancement methods.
Unified Framework for Diversity and Novelty Metrics (1/2)

- **(RecSys 2011)** Expressing many novelty and diversity metrics for RS and incorporate rank and relevance awareness:
 \[m(R|\theta) = C \sum_{i \in R} p(\text{choose}|i) \text{nov}(i|\theta) \]

- Item novelty models:
 - \(\theta=\text{"all users"} \) \(\rightarrow \) global novelty (anti-popularity)
 - \(\theta=\text{"user profile"} \) \(\rightarrow \) personalized novelty
 - \(\theta=\text{"previous recommendation"} \) \(\rightarrow \) temporal diversity
 - \(\theta=\text{"other items in recommendation"} \) \(\rightarrow \) intra-list diversity
• Choice model: rank and relevance-aware!
 - An item is chosen if it is seen and found relevant.
 - Items not chosen, however novel, do not contribute to the recommendation novelty.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0.90</th>
<th>0.81</th>
<th>0.73</th>
<th>0.66</th>
<th>0.59</th>
<th>0.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>(disc(k) = 0.9^{k-1})</td>
<td>1</td>
<td>0.9</td>
<td>0.81</td>
<td>0.73</td>
<td>0.66</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>(p(rel</td>
<td>i, u) = r_{u,i})</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(p(choose</td>
<td>i, u, R))</td>
<td>1</td>
<td>0.9</td>
<td>0</td>
<td>0.73</td>
<td>0</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Connection between IR and RS (1/3)

• Search Result Diversification:
 - Avoiding redundant documents.
 - Coping with query ambiguity.
 - Coping with query underspecification.

• Diversity in Recommendation Lists:
 - Avoiding redundant items.
 - Users usually have different tastes.
 - Users expect varied recommendations.
A straightforward translation of concepts...

- Document ➔ Item
- Query ➔ User
- Subtopics ➔ Tastes

...allows to adapt IR diversity metrics and diversification techniques to RS (SIGIR 2011):

- Metrics: ERR-IA, α-nDCG, S-recall, ...
- Algorithms: MMR, IA-Select, xQuAD, ...
IR diversity metrics present some inconveniences:

- They consider a infinite size ranking of documents, they do not “target” small, fixed-size results lists.
- Presenting a redundant document w.r.t. some subtopics is fine as long as it covers other non-redundant subtopics.

We propose a Binomial Framework for considering coverage, redundancy and size-awareness in diversity in RS (RecSys 2014??).
Novelty and Diversity Enhancement (1/3)

- Explicit relevance models for intent-oriented search result diversification (*SIGIR 2012*).
 - Alternative formulation of well-known aspect-based diversification algorithms: IA-Select and xQuAD.
 - From a generative model to a relevance model.
 - $p(d|c, q) \rightarrow p(\text{rel}|d, c, q)$
 - $p(i|c, u) \rightarrow p(\text{rel}|i, c, u)$
 - Competitive or better performance than the original algorithms.
Novelty and Diversity Enhancement (2/3)

- RS diversification with user-sub-profiles (OAIR 2013).
 - xQuAD: query reformulations (sub-queries) as proxies for subtopics.
 - We propose sub-profiles as an analogy to sub-queries.

- Method:
 - Profiles are partitioned.
 - Recommendations are created for each sub-profile.
 - Combined with xQuAD.
Novelty and Diversity Enhancement (3/3)

- Recommending users to items in Collaborative Filtering (RecSys 2014??):
 - Improving Item novelty
 - Improving Sales diversity
 - Concept: recommending users to items.
 - Two approaches:
 - User-item rating matrix transposition: inverted neighborhoods for nearest neighbors approaches.
 - Probabilistic reformulation: isolate the popularity bias by means of the Bayes rule.
 $$p(i|u) = \frac{p(u|i)}{p(u)} p(i)$$
Open Issues

• Connection between IR diversity and RS diversity:
 – Further analysis required?
 – Other ways to exploit the similarities between them?
 – What other fundamental differences are there?
 – Ideas from RS to IR?

• Conducting online evaluations:
 – How to do perform them?
 – What to evaluate? Metrics, algorithms?
Thank you for your attention!