Chapter 4

Ranking-based evaluation of recommender systems: experimental designs and biases

There is an increasing consensus in the Recommender Systems community that the dominant error-based evaluation metrics are insufficient, and to some extent inadequate, to properly assess the practical effectiveness of recommendations. Seeking to evaluate recommendation rankings – which largely determine the effective accuracy in matching user needs – rather than predicted rating values, Information Retrieval metrics have started to be applied to evaluate recommender systems.

In this chapter we analyse the main issues and potential divergences in the application of Information Retrieval methodologies on recommender system evaluation, and provide a systematic characterisation of experimental design alternatives for this adaptation. We lay out an experimental configuration framework upon which we identify and analyse specific statistical biases arising in the adaptation of Information Retrieval metrics to recommendation tasks, which considerably distort the empirical measurements, hindering the interpretation and comparison of results across experiments. We propose two experimental design approaches that effectively neutralise such biases to a large extent. We support our findings and proposals through both analytical and empirical evidence.

We start the chapter by introducing the problem of (un)biased evaluation in recommender systems. The reminder of the chapter follows by revisiting the principles and assumptions underlying the Information Retrieval evaluation methodology: the Cranfield paradigm (Section 4.2). After that, in Section 4.3 we elaborate a formal synthesis of the main approaches to the application of Information Retrieval metrics to recommendation. In Sections 4.4 and 4.5 we analyse, respectively, the sparsity and popularity biases of Information Retrieval metrics on recommendation tasks. We present and evaluate two approaches to avoid these biases in Section 4.6, and end with some conclusions in Section 4.7.
4.1 Introduction

There seems to be a raising awareness in the Recommender Systems (RS) community that important – or even central – open questions remain to be addressed concerning the evaluation of recommender systems. As we mentioned in the previous chapter, the error in predicting held-out user ratings has been by far the dominant offline evaluation methodology in the RS literature (Breese et al., 1998; Herlocker et al., 2004). The limitations of this approach are increasingly evident, and have been extensively pointed out (Cremonesi et al., 2010). The prediction error has been found to be far from enough or even adequate to assess the practical effectiveness of a recommender system in matching user needs. The end users of recommendations receive lists of items rather than rating values, whereby recommendation accuracy metrics – as surrogates of the evaluated task – should target the quality of the item selection and ranking, rather than the numeric system scores that determine this selection.

For this reason, researchers are turning towards metrics and methodologies from the Information Retrieval (IR) field (Barbieri et al., 2011; Cremonesi et al., 2010; Herlocker et al., 2004), where ranking evaluation has been studied and standardised for decades. Yet, gaps remain between the methodological formalisation of tasks in both fields, which result in divergences in the adoption of IR methodologies, hindering the interpretation and comparability of empirical observations by different authors. The use of IR evaluation techniques involves the adoption of the Cranfield paradigm (Voorhees and Harman, 2005), and common metrics such as precision, mean average precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-Yates and Ribeiro-Neto, 2011). Given the natural fit of top-n recommendation in an IR task scheme, the adoption of IR methodologies would seem straightforward. However, recommendation tasks, settings, and available datasets for offline evaluation involve subtle differences with respect to the common IR settings and experimental assumptions, which result in substantial biases to the effectiveness measurements that may distort the empiric observations and hinder comparison across systems and experiments.

Furthermore, how to measure the performance of a recommender system is a key issue in our research. The variability in the experimental configurations, and the observed statistical biases of the evaluation methodologies should be well understood, since we aim to predict the performance of a system. We should avoid the situation where a metric shows some source of noise together with the recommender’s quality, since then a predictor capturing only that noise would appear as an (equivocal) effective performance predictor.

Taking up from prior studies on the matter (Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011; Steck, 2011), we revisit the methodological assumptions underlying IR metrics, and analyse the differences between Recom-
mender Systems and Information Retrieval evaluation settings and their implications. Upon this, we identify two sources of bias in IR metrics on recommender systems: data sparsity and item popularity. We characterise and study the effect of these two factors both analytically and empirically. We show that the value range of common IR metrics is determined by the density of the available user preference information, to such an extent that the measured values per se are not meaningful, except for the purpose of comparison within a specific experiment. Furthermore, we show that the distribution of ratings among items has a drastic effect on how different algorithms compare to each other. Finally, we propose and analyse two approaches to mitigate popularity biases on the measured ranking quality, providing theoretical and empirical evidence of their effectiveness.

4.2 Cranfield paradigm for recommendation

Information Retrieval evaluation methodologies have been designed, studied, and refined over the years under the so-called Cranfield paradigm (van Rijsbergen, 1989; Voorhees, 2002b). In the Cranfield paradigm, as e.g. typically applied in the TREC campaigns (Voorhees and Harman, 2005), information retrieval systems are evaluated on a dataset comprising a set of documents, a set of queries – referred to as topics and consisting of a description or representation of user information needs –, and a set of relevance judgments by human assessors – referred to as ground truth. The assessors manually inspect queries and documents, and decide whether each document is relevant or not for a query. Theoretically, each query-document pair should be assessed for relevance, which, for thousands or millions of documents, is obviously unfeasible. Therefore, a so-called pooling approximation is applied, in which the assessors actually inspect and judge just a subset of the document collection, consisting of the union of the top-n documents returned by a set of systems for each query. These systems for pooling are commonly the ones to be evaluated and compared, and n is called the pooling depth, typically ranging around 100 documents. While this procedure obviously misses some relevant documents, it has been observed that the degree of incompleteness is reasonably small, and the missing relevance does not alter the empirical observations significantly, at least up to some ratio between the pooling depth and the collection size (Buckley et al., 2007).

Whereas in a search system users may enter multiple queries, the recommendation task – in its classic formulation – typically considers a single “user need” per user, that is, a user has a set of cohesive preferences which defines her main interests. In this view a natural fit of recommendation in the Cranfield paradigm would take users – as an abstract construct – as the equivalent of queries in ad-hoc retrieval (the user need to be satisfied), and items as equivalent to documents (the objects to be retrieved and ranked), summarised in Table 4.1. A first obvious difference is that
queries are explicit representations of specific information needs, whereas in the recommendation setting, user profile records are a global and implicit representation of what the user may need or like. Still, the query-user mapping is valid, inasmuch as user profiles may rightfully fit in the IR scheme as “vague queries.”

The definition of ground truth is less straightforward. User ratings for items, as available in common recommendation datasets, are indeed relevance judgments of items for user needs. However, many recommendation algorithms (chiefly, collaborative filtering methods) require these “relevance judgments” as input to compute recommendations. The rating data withholding evaluation approach, pervasive in RS research, naturally fits here: some test ratings can be held out as ground truth and the rest be left as training input for the systems. Differently from TREC, here the “queries” and the relevance assessments are both entered by the same people: the end-users. Furthermore, how much data are taken for training and for ground truth is left open to the experiment designers, thus adding a free variable to be watched over as it significantly impacts the measurements.

On the other hand, whereas in the IR setting all the documents in the collection are candidate answers for all queries, the set of target items on which recommender systems are tested for each user need not be necessarily the same. As already described in the previous chapter, in general, the items with a test rating are included in the candidate set for the raters, though not necessarily in a single run (Cremonesi et al., 2010). Moreover, it is common to select further non-rated target items, but not necessarily all the items (Bellogín et al., 2011a). Furthermore, the items rated by a user in the training set are generally excluded from the recommendation to this user. The way these options are configured has a drastic effect on the resulting measurements, with variations in orders of magnitude (Bellogín et al., 2011a).

In addition to this, the coverage of user ratings is inherently much smaller in recommender systems’ datasets compared to TREC collections. The amount of un-

<table>
<thead>
<tr>
<th>Task element</th>
<th>TREC ad-hoc retrieval task</th>
<th>Recommendation task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information need expression</td>
<td>Topic (query and description)</td>
<td>User profile</td>
</tr>
<tr>
<td>Candidate answers</td>
<td>All documents in the collection</td>
<td>Target item set</td>
</tr>
<tr>
<td></td>
<td>Same for all queries</td>
<td>One or more per user, commonly different</td>
</tr>
<tr>
<td>Document data available as</td>
<td>Document content</td>
<td>Training ratings, item features</td>
</tr>
<tr>
<td>system input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevance</td>
<td>Topical, objective</td>
<td>Personalised, subjective</td>
</tr>
<tr>
<td>Ground truth</td>
<td>Relevance judgments</td>
<td>Test ratings</td>
</tr>
<tr>
<td>Relevance assessment</td>
<td>Editorial assessors</td>
<td>End users</td>
</tr>
<tr>
<td>Relevance knowledge coverage</td>
<td>Reasonably complete (pooling)</td>
<td>Highly incomplete (inherently to task)</td>
</tr>
</tbody>
</table>

Table 4.1. Fitting the recommendation task in the Cranfield IR evaluation paradigm
known relevance – which in TREC is assumed to be negligible – is pervasive in recommendation settings (it is in fact intrinsic for the task to make sense), to a point where some assumptions of the IR methodology may not hold, and the gap between measured and real metric values becomes so significant that a metric’s absolute magnitude may just lose any meaning. Still, such measurements may support comparative assessments between systems, as far as the bias is system-independent.

Finally, the distribution of relevance in the retrieval space displays popularity patterns that are absent in IR datasets. The number of users who like each item is very variable (typically long-tailed) in recommendation datasets, whereas in TREC collections very few documents are relevant for more than one query. We shall show that this phenomenon has a very strong effect not only on metric values, but more importantly on how systems compare to each other.

In order to provide a formal basis for our study we start by elaborating a systematic characterisation of design alternatives for the adaptation of IR metrics to recommender systems, taking into account prior approaches described in the literature, such as those presented in the previous chapter. This formal framework will help us to analyse and describe the measurement biases in the application of IR metrics to recommender systems, and study new approaches to mitigate them.

4.3 Experimental design alternatives

The application of Information Retrieval metrics to recommender systems evaluation has been studied by several authors in the field (Barbieri et al., 2011; Breese et al., 1998; Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011). We elaborate here an experimental design framework that aims to synthesise commonalities and differences between studies, encompassing prior approaches and supporting new variants upon a common methodological grounding. We formalise the different methodologies presented in the previous chapter, and provide an equivalence between both formulations.

In the following, given a rating set split into training and test rating sets, we say an item $i \in J$ is relevant for a user $u \in U$ if u rated i positively, and its corresponding rating falls in the test set. By positive rating we mean a value above some design-dependent threshold. All other items (non-positively rated or non-rated) are considered as non-relevant. Like in the previous chapter, recommender systems are requested to rank a set of target items T_u for each user. Such sets do not need to be the same for each user, and can be formed in different ways. In all configurations T_u contains a combination of relevant and non-relevant items, and the different approaches are characterised by how these are selected, as we describe next.
4.3.1 Target Item Sampling

We identify three significant design axes in the formation of the target item sets: candidate item selection, relevant item selection, and irrelevant item sampling. We consider two relevant alternatives for each of these axes, summarised in Table 4.2, which we describe next.

We shall use $\mathbf{R}(u)$ and $\mathbf{PR}(u)$ to denote the set of all and positively rated items by user u, respectively, and $r(u)$, $pr(u)$ to denote the respective size of those sets. With the subscripts “test” and “train” we shall denote the part of such sets (or their sizes) contained on the corresponding side of a data split. An equivalent notation $r(i)$, $pr(i)$, and so on, will be used for the ratings of an item, and when no user or item is indicated, the total number of ratings is denoted. This notation and the rest to be used along the chapter are summarised in Table 4.3.

Let $N_u = T_u - \mathbf{PR}_{test}(u)$ be the non-relevant target items for u. As a general rule, we assume non-relevant items are randomly sampled from a subset of candidate items $\mathcal{C} \subset \mathcal{I}$, the choice of which is a design option. We mainly find two significant alternatives for this choice: $\mathcal{C} = \mathcal{I}$ (e.g. Shan and Gunawardana, 2011)) and $\mathcal{C} = \bigcup_{u \in \mathcal{U}} \mathbf{R}_{test}(u)$ (e.g. Bellogín et al., 2011a; Vargas and Castells, 2011)). The first one, which we denote as AI for “all items”, matches the typical IR evaluation setting, where the evaluated systems take the whole collection as the candidate answers. The second, to which we shall refer as TI (“test items”) is an advisable condition to avoid certain biases in the evaluation of RS, as we shall see.

Once \mathcal{C} is set, for each user we select a set $N_u \subset \mathcal{C} - \mathbf{PR}_{test}(u) - \mathbf{R}_{train}(u)$. N_u can be sampled randomly for a fixed size $|N_u|$ (we call this option NN for “N non-relevant”), or all candidate items can be included in the target set, $N_u = \mathcal{C} - \mathbf{PR}_{test}(u) - \mathbf{R}_{train}(u)$ (we refer to this as AN for “all non-relevant”). Some authors have even used $T_u = \mathbf{R}_{test}(u)$ (Basu et al., 1998; Jambor and Wang, 2010a; Jambor and Wang, 2010b), but we discard this option as it results in a highly overestimated precision (Bellogín et al., 2011a). The size of N_u is thus a configuration parameter of

<table>
<thead>
<tr>
<th>Design settings</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\text{AI} $\mathcal{C} = \mathcal{I}$</td>
</tr>
<tr>
<td></td>
<td>\text{TI} $\mathcal{C} = \bigcup_{u \in \mathcal{U}} \mathbf{R}_{test}(u)$</td>
</tr>
<tr>
<td>Item selection</td>
<td></td>
</tr>
<tr>
<td>Relevant</td>
<td>\text{AR} $T_u \supset \mathbf{PR}_{test}(u)$</td>
</tr>
<tr>
<td></td>
<td>\text{IR} $</td>
</tr>
<tr>
<td>Non-relevant</td>
<td>\text{AN} $N_u = \mathcal{C} - \mathbf{PR}{test}(u) - \mathbf{R}{train}(u)$</td>
</tr>
<tr>
<td></td>
<td>\text{NN} Fixed $</td>
</tr>
</tbody>
</table>

Table 4.2. Design alternatives in target item set formation.
4.3 Experimental design alternatives

the experimental design. For instance, in (Cremonesi et al., 2010) the authors propose \(|N_u| = 1,000 \), whereas in (Bellogín et al., 2011a) the authors consider \(N_u = \bigcup_{v \in N} R_{\text{test}}(v) - R_{\text{train}}(u) - PR_{\text{test}}(u) \), among other alternatives. To the best of our knowledge, the criteria for setting this parameter have not been analysed in detail in the literature, leaving it to common sense and/or trial and error. It is worth noting nonetheless that in general \(|N_u| \) determines the number of calls to the recommendation algorithms, whereby this parameter provides a handle for adjustment of the cost of the experiments.

Regarding the relevant item selection, two main options are reported in the literature, to which we shall refer as AR for “all relevant”, and 1R for “one relevant.” In the AR approach all relevant items are included in the target set, i.e., \(T_u \supset PR_{\text{test}}(u) \) (Bellogín et al., 2011a). In the 1R approach, for user \(u \), several target item sets \(T_u \) are formed, each including a single relevant item (Cremonesi et al., 2010). This approach may be more sensitive to the lack of recommendation coverage, as we shall observe later on. The choice between an AR or a 1R design involves a difference in the way the ranking quality metrics are computed, as we shall discuss in the next section.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>Set of all users</td>
</tr>
<tr>
<td>(I)</td>
<td>all items</td>
</tr>
<tr>
<td>(C)</td>
<td>candidate items</td>
</tr>
<tr>
<td>(r)</td>
<td>Nr. of all (\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(r_{\text{test}})</td>
<td>Nr. of all (\mid) test</td>
</tr>
<tr>
<td>(r_{\text{train}})</td>
<td>(\mid) training ratings</td>
</tr>
<tr>
<td>(p_r)</td>
<td>Nr. of all (\mid) test (\mid) training positive ratings</td>
</tr>
<tr>
<td>(p_{r_{\text{test}}})</td>
<td>Nr. of all (\mid) test</td>
</tr>
<tr>
<td>(p_{r_{\text{train}}})</td>
<td>(\mid) training positive ratings</td>
</tr>
<tr>
<td>(R(u))</td>
<td>Set of all (\mid) test (\mid) training items rated by (u)</td>
</tr>
<tr>
<td>(R_{\text{test}}(u))</td>
<td>(\mid) training items rated by (u)</td>
</tr>
<tr>
<td>(R_{\text{train}}(u))</td>
<td>(\mid) training items rated by (u)</td>
</tr>
<tr>
<td>(PR(u))</td>
<td>Set of all (\mid) test (\mid) training items liked by (u)</td>
</tr>
<tr>
<td>(PR_{\text{test}}(u))</td>
<td>(\mid) training items liked by (u)</td>
</tr>
<tr>
<td>(PR_{\text{train}}(u))</td>
<td>(\mid) training items liked by (u)</td>
</tr>
<tr>
<td>(r(u))</td>
<td>Nr. of items rated (\mid) liked (\mid) ... by (u)</td>
</tr>
<tr>
<td>(pr(u))</td>
<td>Nr. of items rated (\mid) liked (\mid) ... by (u)</td>
</tr>
<tr>
<td>(r(i))</td>
<td>Nr. of users who rated (\mid) like (\mid) ... item (i)</td>
</tr>
<tr>
<td>(pr(i))</td>
<td>Nr. of users who rated (\mid) like (\mid) ... item (i)</td>
</tr>
<tr>
<td>(T_u)</td>
<td>Set of target items for (u) in AR (\mid) 1R</td>
</tr>
<tr>
<td>(T_u^r)</td>
<td>Non-relevant items added to build (T_u \mid T_u^r)</td>
</tr>
<tr>
<td>(N_u)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(N_u^r)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(S_u \mid n(T_u))</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(top_s(T_u, n))</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(r_i^u \mid i \in S)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(r_k^{u,v,s})</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(\rho_u)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(\rho_u)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(\rho_u =</td>
<td>T_u \cap PR_{\text{test}}(u)</td>
</tr>
<tr>
<td>(\rho_u =</td>
<td>T_u \cap PR_{\text{test}}(u)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
<tr>
<td>(\delta)</td>
<td>(\mid) test (\mid) training ratings</td>
</tr>
</tbody>
</table>

Table 4.3. Notation summary.
4.3.2 AR vs. 1R Precision

Essentially, the way metrics are defined in AR and 1R differs in how they are averaged. In AR the metrics are computed on each target set T_u in the standard way as in IR, and then averaged over users (as if they were queries). As a representative and simple to analyse metric, we shall use $P@n$ henceforth, but similar properties to all the ones discussed here are observed for other metrics such as MAP and nDCG. The mean AR precision of a recommender system s can be expressed as:

$$P_s@n = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{n} |\text{top}_s^u(T_u, n) \cap PR_{\text{test}}(u)|$$

where $\text{top}_s^u(T_u, n)$ denotes the top n items in T_u ranked by s for u.

In the 1R design, drawing from (Cremonesi et al., 2010), we compute and average the metrics over the T_1^u sets, as follows:

$$1R P_s@n = \text{precision}(n) = \frac{1}{pr_{\text{test}}} \sum_{u \in \mathcal{U}} \sum_{r=1}^{pr_{\text{test}}(u)} P_s^n(T_1^u)$$ (4.1)

where $P_s^n(T_1^u)$ is the standard precision of T_1^u for u. This form to express the metric is equivalent to the original formulation in (Cremonesi et al., 2010), but lets a straightforward generalisation to any other IR metric such as MAP and nDCG, by just using them in place of $P_s^n(T_1^u)$ in Equation (4.1). We shall intentionally use the same symbol P to refer both to 1R and AR precisions when there is no ambiguity. Whenever there may be confusion, or we wish to stress the distinction, we shall use $1RP$ to explicitly denote 1R precision.

AR precision basically corresponds to the standard precision as defined in IR, whereas 1R precision, while following essentially the same principle, departs from it in the formation of runs, and the way to average values. Additionally, note that the maximum value of $1RP@n$ is $1/n$ as we shall see in the next section, mainly since each run has only one relevant item. Besides, in Section 4.4 we shall establish a formal relation between both ways to compute precision.

4.3.3 Preliminary Test

In order to illustrate the effects of the different described alternatives, we show their results on three common collaborative filtering algorithms, based respectively on probabilistic Latent Semantic Analisys (pLSA) (Hofmann, 2004), matrix factorisation (MF) (Koren et al., 2009), and user-based nearest-neighbours (kNN) (Cremonesi et al., 2010). As additional baselines, we include recommendation by popularity and random recommendation. We use two datasets: the 1M version of MovieLens, and
4.3 Experimental design alternatives

an extract from Last.fm published by Ó. Celma (Celma and Herrera, 2008). Details about the implementation and datasets partition are provided in Appendix A.

Figure 4.1 shows the P@10 results with AR and 1R configurations. For 1R we shall always use TI-NN, with $|T_u| = 100$. This is a significantly lower value than $|T_u| = 1,001$ reported in (Cremonesi et al., 2010), but we have found it sufficient to ensure statistical significance (e.g. Wilcoxon $p \ll 0.001$ for all pairwise differences between the recommenders in Figure 4.1), at a considerably reduced execution cost. We adopt the TI policy in 1R to avoid biases that we shall describe later. In the AR configuration we show TI-AN and AI-AN for MovieLens, though we shall generally stick to TI-AN in the rest of the chapter. In Last.fm we use only TI-NN and a temporal split, with $|N_u| = 2,500$ for efficiency reasons, since $|J| = 176,948$ is considerably large in this dataset. We set the positive relevance rating threshold to 5 in MovieLens, as in (Cremonesi et al., 2010), whereas in Last.fm, we take any number above 2 playcounts as a sign of positive preference. We have experimented with other thresholds for positive ratings, obtaining equivalent results to all the ones that are reported here – the only difference is discussed in Section 4.6.

It can be seen that pLSA consistently performs best in most experimental configurations, closely followed by popularity, which is the best approach in Last.fm with AR, and that MF is generally superior to kNN. Some aspects strike our attention. First, even though P@10 is supposed to measure the same thing in all cases, the range of the metric varies considerably across configurations and datasets, and even the comparison is not always consistent. For instance, in AR popularity ranges from 0.08 on MovieLens to 0.35 on Last.fm; and AR vs. 1R produces some disagreeing comparisons on Last.fm. It may also be surprising that popularity, a non-personalised method, fares so well compared to other algorithms. This effect was already found recently in (Cremonesi et al., 2010) and (Steck, 2011). We also see that TI and AI produce almost the same results. This is because $U_{ue\in I} R_{test}(u) \sim J$ in MovieLens; differences become noticeable in configurations where $U_{ue\in I} R_{test}(u)$ is significantly

![Figure 4.1. Precision of different recommendation algorithms on MovieLens 1M and Last.fm using AR and 1R configurations.](image-url)
smaller than \(J \), as we shall see in Section 4.6.2. As mentioned before, note that in this case, the upper bound of \(P@10 \) for the 1R methodology is 0.10.

Some of this variability may reflect actual strengths and weaknesses of the algorithms for different datasets, but we shall show that a significant part of the observed variations is due to statistical biases arising in the adaptation of the Cranfield methodology to recommendation data, and are therefore meaningless with respect to the assessment of the recommenders’ accuracy. Specifically, we have found that the metrics are strongly biased to test data sparsity and item popularity. We shall analyse this in detail in Sections 4.4 and 4.5, but before that we establish a relation between AR and 1R precision that will help in this analysis.

4.3.4 Relation between AR and 1R

We have seen that AR and 1R precisions produce in general quite different values, and we shall show they display different dependencies over certain factors. We find nonetheless a direct relation between the two metrics. Specifically, 1R precision is bound linearly by NN-AR precision, that is, \(1RP_s@n = \Theta(P_s@n) \), as we show next.

Lemma. Let us assume the irrelevant item sampling in 1R is done only once for all the test ratings of a user, that is, we select the same set of non-relevant items \(N^r_u = N_u \) in the \(T^r_u \) target sets. If we denote \(T^*_u = N_u \cup PR_{test}(u) \) – in other words, \(T^*_u = U_r T^r_u \) –, we have:

\[
\frac{|U|P_s@n}{pr_{test}} \leq 1RP_s@n \leq \frac{\sum_{u \in U} m_u P_s^u@m_u(T_u)}{n \cdot pr_{test}} \tag{4.2}
\]

with \(m_u = n + pr_{test}(u) - 1 \), where \(P_s@n \) is the NN-AR precision computed with the target sets \(\{T^*_u\} \).

Proof. Let \(i^r_u \) be the relevant item included in \(T^r_u \), and let \(\tau^u_s(i, S) \) denote the ranking position assigned to \(i \) by \(S \) for \(u \) within a set \(S \), where \(i \in S \). Since \(T^r_u \subset T_u \), we have that \(\tau^u_s(i^r_u, T^r_u) \leq \tau^u_s(i^r_u, T_u) \). This means that if \(i^r_u \) is ranked above \(n \) in \(T_u \), then it is also above \(n \) in its target set \(T^*_u \). Hence \(\sum_{r=1}^{mp_{test}(u)} |top^u_s(T^r_u, n) \cap PR_{test}(u)| \geq |top^u_s(T_u, n) \cap PR_{test}(u)| \). Summing on \(u \), and dividing by \(n \) and \(pr_{test} \) we prove the first inequality of Equation (4.2).

On the other hand, it is easy to see that \(\tau^u_s(i^r_u, T^r_u) \geq \tau^u_s(i^r_u, T_u) + pr_{test}(u) - 1 \). Thus, if \(i^r_u \) is ranked above \(n \) in \(T^r_u \), then it is above \(m_u = n + pr_{test}(u) - 1 \) in \(T_u \). Thus \(\sum_{r=1}^{mp_{test}(u)} |top^u_s(T^r_u, n) \cap PR_{test}(u)| \leq |top^u_s(T_u, m_u) \cap PR_{test}(u)| = m_u P_s@m_u(T_u) \). And the second inequality of Equation (4.2) follows again by summing on \(u \), and dividing by \(n \) and \(pr_{test} \). \(\square \)
Note that the assumption $N^r_u = N_{tu}$ in the lemma is mild, inasmuch as the statistical advantage in taking different N^r_u for each r is unclear. Even in that case, $P_s@n$ and $\text{avg}_{u \in \mathcal{U}}(m_u P_s@m_u(T_u))$ should be reasonably stable with respect to the random sampling of N^r_u, and thus Equation (4.2) tends to hold. Figure 4.2 illustrates the relation between the AR bounds and the 1R values. The empiric observation suggests they provide similar while not fully redundant assessments. We also see that the bounding interval reduces progressively as $|T_u|$ is increased (right), and even faster with test data sparsity (left) – in sum, the metric converges to its bounds as $|T_u| \gg \text{avg}_u p_{\text{test}}(u) = p_{\text{test}}/|\mathcal{U}|$.

4.3.5 Limitations of error-based metrics

The analysis presented in (Bellogín et al., 2011a) leads to question again the suitability of error metrics. As in (McLaughlin and Herlocker, 2004), we found that there is no direct equivalence between results with error- and precision-based metrics. Common sense suggests that putting more relevant items in the top-N is more important for real recommendation effectiveness than being accurate with predicted rating values, which are usually not even shown to real users. Our study confirms that measured results differ between these two perspectives. An online experiment, where real users’ feedback is contrasted to the theoretic measurements, may shed further light for an objective assessment and finer analysis of which methodology better captures user satisfaction.

Furthermore, the use of error-based metrics may not be applicable depending on the dataset or the recommender evaluated. For instance, log-based datasets and probabilistic (e.g. pLSA) or popularity-based recommenders cannot be evaluated using error-based metrics because no real ratings are available in the first case, and in
the second case because such recommenders do not necessarily predict a rating, not even a score in the range of ratings (Cremonesi et al., 2010).

The application of ranking-based metrics to recommendation, nonetheless, is far from being trivial. Firstly, there are obvious differences between the Cranfield paradigm and a standard recommendation context, as described in Section 4.2. Secondly, the evaluation methodology may be sensitive to any statistical bias which may appear in the process. In the next sections we shall analyse two of these sources of bias: sparsity and popularity.

4.4 Sparsity bias

As mentioned earlier, we identify two strong biases in precision metrics when applied to recommendation. The first one is a sensitivity to the ratio of the test ratings vs. the added non-relevant items. We study this effect by an analysis of the expected precision for non-personalised and random recommendations in the AR and 1R settings.

4.4.1 Expected Precision

Let $i^u_s \in T_u$ be the item ranked at position k in the recommendation output for u by a recommender system s, and let σ be the ratio of test data in the training-test data split. In an AR setup the expected precision at n (over the sampling space of data splits with ratio σ, the sampling of N_u, and any potential non-deterministic aspect of the recommender system – as e.g. in a random recommender) is:

$$E[P_s@n] = \frac{\sum_{i=1}^{n} p(\text{rel}|i_k^u_s, u, T_u)}{n}$$

where $p(\text{rel}|i, u)$ denotes the probability that item i is relevant for user u, i.e., the probability that $i \in PR_{test}(u)$. Now we may write $p(\text{rel}|i_k^u_s, u, T_u) \equiv p(\text{rel}, T_u|i_k^u_s, u)/p(T_u|i_k^u_s, u)$, where we have $p(T_u|i_k^u_s, u) = p(i_k^u_s \in T_u) = |T_u|/|C|$. On the other hand, $p(\text{rel}, T_u|i_k^u_s, u) \equiv p(i_k^u_s \in PR_{test}(u) \cap T_u) = p(i_k^u_s \in PR_{test}(u)) = p(\text{rel}|i_k^u_s, u)$, since $PR_{test}(u) \subseteq T_u$ in the AR methodology. If s is a non-personalised recommender then $i_k^u_s$ and u are mutually independent, and it can be seen that $\text{avg}_{u \in U} p(\text{rel}|i_k^u_s, u) = \text{avg}_{u \in U} p(\text{rel}|i_k^u_s)$. All this gives:

$$E[P_s@n] = \frac{|C|}{n \cdot t} \sum_{k=1}^{n} \text{avg}_{u \in U} p(\text{rel}|i_k^u_s)$$
4.4.2 Test Sparsity Bias

The above results for the expected random precision provide a formal insight on strong metric biases to characteristics of the data and the experimental configuration. In both Equations (4.4) for AR and (4.5) for 1R, we may express the expected random precision as $E[P_{\text{RND}}@n] = \text{avg}_u \rho_u = \rho$, where ρ_u is the ratio of positively rated items by u in T_u (or T_u^r, for that matter), and $\rho \sim \sigma \cdot \delta$, or $\rho = 1/t$, depending on the experimental approach. In the AR approach the density δ, and thus the ρ ratio, are also inversely proportional to t. Precision in this methodology is therefore sensitive to (grows linearly with) σ and pr, and is inversely proportional to t, whereas 1R is only sensitive (inversely proportional) to t. The expected precision of random recommendation naturally provides a lower bound for any acceptable recommender. Note that in any configuration of AR and 1R, the total precision of any system is $P_s = P_{\text{RND}} = \rho = E[P_{\text{RND}}@n]$, since as all systems are required to return
(recommend) all items in the target sets T_u (or T_u^r), that is, the total precision does not depend on the ranking. At lower cutoffs, we expect to have $P@n > E[P_{RND}@n] = \rho$. In other words, the lower bound – and so the expected range – for the $P@n$ of recommender algorithms grows with the average ratio of relevant items per target item set.

The ρ ratio – hence the random precision – thus depends on several aspects of the experimental setup (the experimental approach, the split ratio σ, the number of non-relevant items in the target sets), and the test collection (the number of ratings, the number of users). Therefore, since ρ and the random precision can be adjusted arbitrarily by how the test sets are split, constructed, etc., we may conclude that the specific value of the metric has a use for comparative purposes, but has no particular meaning by itself, unless accompanied by the corresponding average relevance ratio ρ of the target test sets. This is naturally in high contrast to common IR datasets, where both the document collection and the relevance information are fixed and not split or broken down into subsets. In fact, the metric values reported in the TREC campaigns have stayed within a roughly stable range over the years (Armstrong et al., 2009a; Armstrong et al., 2009b). Note also that the sparsity bias we analyse here is different from the impact of training data sparsity in the performance of collaborative filtering systems. What we describe is a statistical bias caused by the sparsity of test data (as a function of overall data sparsity and/or test data sampling), and its effect does not reflect any actual variation whatsoever in the true recommendation accuracy.

The sparsity bias explains the precision range variations observed earlier in Figure 4.1. The empirically obtained values of random precision match quite exactly the

![Figure 4.3](image-url) Evolution of the precision of different recommendation algorithms on MovieLens 1M, for different degrees of test sparsity. The x axis of the left and center graphics shows different amounts of removed test ratings. The x axis in the right graphic is the size of the target item sets.
4.5 Popularity bias

Sparsity is not the only bias the metric measurements are affected by. The high observed values for a non-personalised method such as recommendation by popularity raise the question of whether this really reflects a virtue of the recommender, or some other bias in the metric. We seek to shed some light on the question by a closer study.

4.5.1 Popularity-Driven Recommendation

Even though they contradict the personalisation principle, the good results of popularity recommendation can be given an intuitive explanation. By averaging over all users, precision metrics measure the overall satisfaction of the user population. A method that gets to satisfy a majority of users is very likely to perform well under such metrics. In other words, average precision metrics tend to favour the satisfaction of majorities, regardless of the dissatisfaction of minorities, whereby algorithms that target majority tastes will expectably yield good results on such metrics. This implicitly relies on the fact that on a random item split, the number of test ratings for an item correlates with its number of training ratings, and its number of positive ratings correlates with the total number of ratings. More formally, the advantage of
popularity-oriented recommendation comes from the fact that in a random rating split, \(E[pr_{test}(i)] \propto pr(i) \propto E[pr_{train}(i)] \propto r_{train}(i)\), which means that the items with many training ratings will tend to have many positive test ratings, that is, they will be liked by many users according to the test data. We analyse this next, more formally and in more detail.

In a popularity recommender \(i_k^{pop}\) is the \(k\)-th item in the target set with most ratings in the training set — i.e., the system ranks items by decreasing order of \(r_{train}(i_k^{pop})\). This ranking is almost user-independent (except for those, statistically negligible, user items already in training which are excluded from the ranking) and therefore, for an AR experimental design, Equation (4.3) applies. Since we have \(\sum_{k=1}^{n} pr(i_k^{pop}) = \max_x \sum_{k=1}^{n} pr(i_k^{us})\) (as far as \(E[pr_{test}(i)] \propto r_{train}(i)\) for a random training-test split), the popularity recommendation is the best possible non-personalised system, maximising \(E[P_s@n]\). Popularity thus achieves a considerably high precision value, just for statistical reasons.

For a 1R experimental design, using Equation (4.2) (lemma) we have:

\[
\frac{|U|E[P_s@n]}{pr_{test}} \leq E[1RP_s@n] \leq \frac{\sum_u E[m_u P_s^u @ m_u(T_u)]}{n \cdot pr_{test}}
\]

Now, since \(P_s@n\) and \(P_s^u @ m_u\) above are computed by AR, we may elaborate from Equation (4.3) for a non-personalised recommender, and we get:

\[
\frac{|U|}{n \cdot t \cdot pr} \sum_{k=1}^{n} pr(i_k^{us}) \leq E[1RP_s@n] \leq \frac{|C|}{n \cdot t \cdot pr} \sum_{k=1}^{m_u} pr(i_k^{us})
\]

This experimental approach is thus equally biased to popular items, since the latter optimise \(\sum_{k=1}^{n} pr(i_k^{us})\).

Note that the advantage of popularity over other recommenders is highly dependent on the skewness in the distribution of ratings over items: if all items were equally popular, the popularity recommender would degrade to random recommendation — in fact slightly worse, as \(pr_{test}(i) \propto r_{test}(i) = r/|T| - r_{train}(i)\), so popular items would have fewer positive test ratings. On the other extreme, if a few items (less than \(n\)) are liked by most users, and the rest are liked by very few, then popularity approaches the maximum precision possible.

4.5.2 Popularity Distributions

In order to illustrate how the dependence between the popularity precision and the background popularity distribution evolves, we simulate different degrees of skewness in rating distributions. As a simulated distribution pattern we use a shifted power law \(r(i_k) = c_1 + \beta(c_2 + k)^{-\alpha}\), where \(\alpha\) determines the skewness (e.g. \(\alpha \sim 1.4\) for MovieLens 1M). Figure 4.4 (left) shows the shape of generated distributions ranging
from uniform ($\alpha = 0$) to a very steep long-tailed popularity distribution ($\alpha = 2$), and (center) how the measured precision evolves in this range. The artificial data are created with the same number of users, items, and ratings (therefore the same rating density) as in MovieLens 1M, setting c_1 and c_2 by a fit to this dataset, and enforcing these constraints by adjusting β. The rating values are assigned randomly on a 1-5 scale, also based on the prior distribution of rating values in MovieLens.

The results in Figure 4.4 (center) evidence the fact that the precision of popularity-based recommendation is heavily determined by the skewness of the distribution. It benefits from steep distributions, and degrades to slightly below random (0.0077 vs. 0.0100) when popularity is uniform. This slightly below-random performance of popularity recommendation at $\alpha = 0$ is explained by the fact that $E[pr_{test}(i)] \propto E[r_{test}(i)] = r(i) - E[r_{train}(i)]$ is inverse to the popularity ranking by $r_{train}(i)$ when $r(i)$ is uniform, as predicted at the end of the previous section. kNN and MF stay essentially around random recommendation. This is because the data are devoid of any consistent preference pattern (as collaborative filtering techniques would assume) in this experiment, since the ratings are artificially assigned at random, and the results just show the “pure” statistical dependency to the popularity distribution. pLSA does seem to take advantage of item popularity, as it closely matches the effectiveness of popularity recommendation. We show only the 1R design, but the effect is the same in AR.

This observation also explains the difference between datasets from IR and those from recommendation with regards to the popularity bias. Figure 4.4 (right) shows the cumulative distribution of positive user interaction data per item in three

![Figure 4.4](image-url)
datasets: Netflix, MovieLens, and Last.fm (the dataset in Section 4.3.3). The shapes of the curves are typical of long-tailed distributions, where a few popular items accumulate most of the preference data (Celma, 2010; Celma and Cano, 2008). This contrasts with the distribution of positive relevance judgments over documents in TREC data (same figure) – where we have aggregated 30 individual tracks, filtering out the documents that are not relevant to any query, and obtaining a set of 703 queries, 129,277 documents, and 149,811 positive judgments. The TREC distribution is considerably flatter, not far from uniform: 87.2% of documents are relevant to just one query, and the maximum number of positive assessments per document is 25 (3.6% of queries), whereas the top popular item in Netflix, MovieLens, and Last.fm, is liked by 20.1%, 32.7% and 73% of users, respectively.

Several reasons account for this difference between retrieval and recommender datasets. First, in IR queries are selected by design, intending to provide a somewhat varied testbed to compare retrieval systems. Hence, including similar queries with overlapping relevance would not make much sense. Second, queries in natural search scenarios are generally more specific and narrower than global user tastes for recommendation, whereby the corresponding relevant sets have much less intersection. Furthermore, the TREC statistics we report are obtained by aggregating the data of many tracks, in order to seek any perceptible popularity slant. The typical TREC experiments are actually run on separate tracks comprising typically 50 queries, where very few documents, if any, are relevant to more than one query. Note also that even though we have filtered out over 0.7 million non-relevant plus nearly 5 million unlabeled documents in the TREC statistics, the non-relevant documents actually remain as input to the systems, contrarily to experiments in the recommender domain, thus making up an even flatter relevance distribution. Moreover, in the usual IR evaluation setting, the systems have no access to the relevance data – thus, they have no means to take a direct bias towards documents with many judgments –, whereas in recommendation, this is the primary input the systems (particularly collaborative filtering recommenders) build upon. The popularity phenomenon has therefore never been an issue in IR evaluation, and neither the metrics nor the methodologies have had to even consider this problem, which arises now when bringing them to the recommendation setting – where the overlap between user preferences is not only common, but actually needed by collaborative filtering algorithms.

4.6 Overcoming the popularity bias

After analysing the effects of popularity in precision metrics, the issue remains: to what extent do the good results of popularity recommendation reflect only a statistical bias in a metric, or any degree of actual recommendation quality? The same question should be raised for pLSA, which seems to follow the popularity trends quite
4.6 Overcoming the popularity bias

We address the question by proposing and examining alternative experimental configurations, where the statistical role of popularity gets reduced, as we propose next.

4.6.1 Percentile-Based Approach (P1R)

We propose a first approach to neutralise the popularity bias, which consists in partitioning the set of items into m popularity percentiles $I_k \subset I$, breaking down the computation of accuracy by such percentiles, and averaging the m obtained values. By doing so, in a common long-tailed popularity distribution, the margin for the popularity bias is considerably reduced, as the difference Δ_k in the number of positive test ratings per item between the most and least popular items of each percentile is not that high. The popularity recommender is forced to recommend as many unpopular as popular items, thus leveling the statistical advantage to a significant extent. It remains the optimal non-personalised algorithm, but the difference – and thus the bias – is considerably reduced. The technique is illustrated in Figure 4.5a.

A limitation of this approach is that it restricts the size of the target sets by $|T_k| \leq |I|/m$. For instance, for $m = 10$ in MovieLens 1M, this imposes a limit of $|T_k| \leq \sim 370$, which seems acceptable for 1R. The restriction can be more limiting in the AR approach, e.g. the TI and AI options cannot be applied (except within the percentiles). For this reason, we will only apply the percentile technique in the 1R design, a configuration to which we shall refer as P1R.
4.6.2 Uniform Test Item Profiles (UAR, U1R)

We now propose a second technique consisting of the formation of data splits where all items have the same amount of test ratings. The assumption is that the items with a high number of training ratings will no longer have a statistical advantage by having more positive test ratings. That is, the relation \(E[pr_{\text{test}}(i)] \propto r_{\text{train}}(i) \) described in Section 4.5.1 breaks up. The approach consists of splitting the data by picking a set \(T \) of candidate items, and a number \(\eta \) of test ratings per item so that \(|T| \eta/r = \sigma \). For this to be possible, it is necessary that \((1 - \varepsilon) r(i) \geq \eta, \forall i \in T \), where \(\varepsilon \) is a minimum ratio of training ratings per item we consider appropriate. In particular, in order to allow for \(n \)-fold cross-validation, we should have \(\varepsilon \geq 1/n \). The selection of \(T \) can be done in several ways. We propose to do so in a way that it maximises \(|T| \), i.e., to use as many different target test items as possible, avoiding a biased selection towards popular items. If we sort \(i_k \in I \) by popularity rank, it can be seen that this is achieved by picking \(T = \{ i_k \in I | k \leq \zeta \} \) with \(\zeta = \max \{ k | (1 - \varepsilon) r(i_k) k/r \geq \sigma \} \), so that \(\eta = (1 - \varepsilon) r(i_\zeta) \). Figure 4.5b illustrates this procedure.

The expected effect of this approach is that the statistical relation \(E[pr_{\text{test}}(i)] \propto pr(i) \) no longer holds, and neither should hold now, as a consequence, the rationale described in Section 4.5.1 for popularity being the optimum non-personalised recommender. In fact, since \(E[pr_{\text{test}}(i)] = \eta \cdot pr(i)/r(i) \) for any \(i \in T \), and \(\eta = \sigma \cdot r/|T| \), it can be seen that if \(C = T \) (TI policy) Equation (4.3) for AR yields:

\[
E[P_{\text{AR}@n}] = \frac{\sigma \cdot r}{n \cdot t \cdot pr} \sum_{k=1}^{n} \frac{\text{avg}_{u \in U} pr(i_k^{u,s})}{r(i_k^{u,s})}
\]

for any non-personalised recommender. If the ratio \(pr(i_k^{u,s})/r(i_k^{u,s}) \) of positive ratings does not depend on \(k \), we have \(E[P_{\text{AR}@n}] = E[P_{\text{RND}@n}] = \sigma \cdot \delta \). This means that popularity recommendation may get some advantage over other recommenders only if – and to the extent that – popular items have a higher ratio of positive ratings than unpopular items, and popularity recommendation will degrade to random precision otherwise. On the other hand, it can be seen that if \(C \supseteq T \) (i.e., the TI policy is not adhered to), then \(E[P_{\text{RND}@n}] \) would get reduced by a factor of \(|T|/|C|\).

For a non-personalised recommender in a 1R design, elaborating from Equations (4.2) and (4.3) we get:

\[
\frac{r}{n \cdot t \cdot pr} \text{avg}_{u \in U} \sum_{k=1}^{n} \frac{pr(i_k^{u,s})}{r(i_k^{u,s})} \leq E[1RP_{\text{AR}@n}] \leq \frac{r}{n \cdot t \cdot pr} \text{avg}_{u \in U} \sum_{k=1}^{m_u} \frac{pr(i_k^{u,s})}{r(i_k^{u,s})}.
\]
an equivalent situation where the measured precision of popularity recommendation is bound by the potential dependence between the ratio of positive ratings and popularity.

Figure 4.6 shows this ratio as \(pr(i)/r(i)\) with respect to the item popularity rank in MovieLens 1M. It can be seen that indeed the ratio grows with popularity in this dataset, which does lend an advantage for popularity recommendation. Even so, we may expect the bias to be moderate – but this has to be tested empirically, as it depends on the dataset. Note also that in applications where all ratings are positive (as e.g. in our Last.fm setup), popularity – and any non-personalised recommender – would drop exactly to random precision \((\mathbb{E}[P_{s}@n] = \sigma \cdot \delta\) in AR and \(1/t\) in 1R).

A limitation of this approach is that the formation of \(T\) may impose limits on the value of \(\sigma\), and/or the size of \(T\). If the popularity distribution is very steep, \(T\) may turn out small and therefore biased to a few popular items. Moreover, there is in general a solution for \(T\) only up to some value of \(\sigma\) – it is easy to see (formally, or just visually in Figure 4.5) that as \(\sigma \to 1\) there is no item for which \((1-\varepsilon) r(i_k) k/r \geq \sigma\), unless the popularity distribution was uniform, which is never the case in practice. We have however not found these limitations to be problematic in practice, and common configurations turn out to be feasible without particular difficulty. For instance, in MovieLens 1M we get \(|T| = 1,703\) for \(\sigma = 0.2\) with \(\varepsilon = 0.2\) (allowing for a 5-fold cross-validation), resulting in \(\eta = 118\) test ratings per item.

This method can be used, as noted, in both the AR and 1R approaches. We shall refer to these combinations as UAR and U1R respectively, where ‘U’ stands for the “uniform” number of item test ratings. In U1R it is important to set \(C = T\) in order to sample non-relevant items within \(T\) (i.e., \(N_u \subset T\), for the TI policy). Otherwise, popularity would have a statistical advantage over other recommenders, as it would systematically rank irrelevant items in \(N_u - T\) below any relevant item in \(T\), whereas
other algorithms might not. The same can be considered in UAR, unless the experimental setup requires $|T_u| > |T|$, as e.g. in the AI design. In that case a slight popularity bias would arise, as we shall see next.

4.6.3 Experimental Results

Figure 4.7 compares the results measured by 1R, AR and their corresponding popularity-neutralising variants. The setup is the same as in previous sections, except that for AR, we take TI-NN with $|N_u| = 1,700$, to level with UAR in random precision. All the results correspond to MovieLens 1M except Last.fm where indicated. It can be seen that P1R, U1R and UAR effectively limit the popularity bias. The techniques seem to be more effective on 1R than AR: U1R and (even more) P1R actually place the popularity algorithm by the level of random recommendation, whereas the measured popularity precision decreases in UAR, but remains above kNN. The advantage of popularity over randomness in U1R and P1R is explained by the bias in the ratio of positive ratings in popular items (Figure 4.6). This ratio is constant in Last.fm, whereby popularity drops to random in U1R, as predicted by our analysis in the previous section, proving that the popularity bias remaining in the uniform-test approach is caused by this factor. This residual bias is higher in U1R than P1R, because in the former, N_u is sampled over a larger popularity interval ($|T| = 1,703$ vs. $|T| / 10 = 370$ items), giving a higher range for advantage by popularity, which also explains why the latter still overcomes kNN in UAR. We may observe the importance of using the TI policy in UAR, without which (in AI-UAR) a higher bias remains. We also show the effect of removing the 10% most popular head items from the test data (and also from C, i.e., they are excluded from N_u sampling) in 1R, as a simple strategy to reduce the popularity bias (Cremonesi et al., 2010). We see that this technique reduces the measured precision of popularity, but it is not quite as effective as the proposed approaches.

It is finally worth emphasising how the percentile and uniform-test approaches discriminate between pure popularity-based recommendation and an algorithm like pLSA, which does seem to take popularity as one of its signals, but not the only one. The proposed approaches allow uncovering the difference, neutralising popularity but not pLSA, which remains the best algorithm in all configurations.

As we mentioned in Section 4.3, we have taken precision as a simple and common metric for our study, but all the presented analysis and proposed alternatives straightforwardly generalise to other standard IR metrics, such as MAP, nDCG, and Mean Reciprocal Rank (MRR). Their application is direct in the AR setting; and they can be applied in 1R by simply introducing them in place of precision in the internal summation of Equation (4.1). Figure 4.7 shows results for nDCG, where we see that the analysed patterns hold just the same. The AR approach provides room for a
slightly wider metric variety than 1R, in the sense that some metrics reduce to each other in 1R. For instance, for a single relevant item, MAP is equivalent to Mean Reciprocal Rank (where R is the rank of the first relevant item). And nDCG is insensitive to relevance grades in 1R (the grade of the single relevant item cancels out), whereas grades do make a difference in AR.

4.7 Conclusions

The application of Information Retrieval methodologies to the evaluation of recommender systems is not necessarily as straightforward as it may seem. Hence, it deserves close analysis and attention to the differences in the experimental conditions, and their implications on the explicit and implicit principles and assumptions on which the metrics build. We have proposed a systematic characterisation of design alternatives in the adaptation of the Cranfield paradigm to recommendation tasks, aiming to contribute to the convergence of evaluation approaches. We have identified assumptions and conditions underlying the Cranfield paradigm which are not granted in usual recommendation experiments. We have detected and examined resulting statistical biases, namely test sparsity and item popularity, which do not arise in common test collections from IR, but do interfere in recommendation experi-

Figure 4.7. Precision and nDCG of recommendation algorithms on MovieLens 1M (and Last.fm only where indicated) using the 1R, U1R, PIR (m = 10 percentiles), AR, and UAR methodologies. The “-10% head” bars show the effect of removing the 10% most popular items from the test data (Cremonesi et al., 2010).
ments. Sparsity is clearly a noisy variable that is meaningless with respect to the value of a recommendation. Whether popularity is in the same case is less obvious; we propose experimental approaches that neutralise this bias, leaving way to an unbiased observation of recommendation accuracy, isolated from this factor. With a view to their practical application, we have identified and described the pros and cons of the array of configuration alternatives and variants analysed in this study.

In general, we have found that evaluation metrics computed in AR and 1R approaches differ in how they are averaged. This means, more specifically, that precision obtained by approaches following a 1R design is bound linearly by precision of AR approaches. Moreover, we have observed that a percentile-based evaluation considerably reduces the margin for the popularity bias, although the main limitation of this approach is that it specifies a constraint on the size of the possible target sets. Additionally, a uniform-test approach removes any statistical advantage provided by having more positive test ratings. Furthermore, we have found that both approaches discriminate between pure popularity-based recommendation and an algorithm like pLSA.

The main goal of our research addresses a second-order problem: we aim to predict the accuracy of the predictions of recommendation algorithms. As we shall see, the (second-order) evaluation of our researched methods relies on the (first-order) evaluation metrics and methodologies by which the recommendation algorithms’ accuracy is measured. In order to consistently evaluate our methods, the primary recommendation evaluation has to be reliable and well-understood. Any bias in the process would lead to inconclusive or misleading results about the predictive power of our methods. For this reason, the results presented in this chapter are a necessity for the main goal of this thesis, but the outcome can be of more general use. Specifically, in the following chapters we shall compare how the different methodologies (with and without neutralised biases) may impact the observations on the predictive power of our predictors.

The popularity effects in recommender systems have started to be reported in recent work (Cremonesi et al., 2011; Cremonesi et al., 2010; Steck, 2011). Our research complements such findings by seeking principled theoretical and empirical explanations for the biases, and providing solutions within the frame of IR evaluation metrics and methodology – complementarily to the potential definition of new special-purpose metrics (Steck, 2011). The extent to which popularity is a noisy signal may be further analysed by developing more complete metric schemes incorporating gain and cost dimensions, where popular items would expectably score lower. Such metrics may e.g. account for the benefits (to both recommendation consumers and providers) drawn from novel items in typical situations (Vargas and Castells, 2011), as a complement to plain accuracy. Online tests with real users should also be valuable for a comparative assessment of offline observations, and the validation of experimental alternatives.